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Abstract—A blockchain-based decentralized application
(DApp) refers to an application typically using web pages or
mobile applications as the front-end and smart contracts as
the back-end. The front-end of the DApp helps users generate
transactions and send them to the user’s blockchain wallet.
After the user signs and confirms the transaction using the
blockchain wallet, the transaction will invoke the smart contract
of the DApp. However, users bear the following risks when using
DApps because of the potential inconsistent behaviors in DApps.
First, the DApp front-end may generate incorrect transactions
inconsistent with users’ intentions. Second, the smart contract
may have misbehaviors when executing the transactions.
Inconsistent behaviors of DApps not only lead to user confusion
but also cause significant financial losses. In this paper, we
proposed a novel approach to identify inconsistent behaviors
of DApps on EVM-compatible blockchains by contrasting the
behaviors of DApps that derived from the front-end, blockchain
wallet, and smart contracts, respectively. We implemented our
approach into a prototype named DAppHunter. We have
applied DAppHunter on 92 real-world DApps of Ethereum and
Binance Smart Chain and successfully identified 37 DApps with
inconsistent behaviors. We confirmed that 35 of them are scam
DApps and over 5 million blockchain addresses are at risk of
becoming victims of these inconsistent DApps.

Index Terms—blockchain, smart contract, DApp testing, in-
consistent behavior

I. INTRODUCTION

A blockchain consists of a growing list of records, called

blocks, which are chained together using a cryptographic hash

[1]. The underlying structure of a blockchain platform is a P2P

overlay that consists of multiple nodes. In 2015, Ethereum

was launched and quickly became one of the most popu-

lar blockchain platforms. Ethereum supports smart contracts,

which are programs that are executed in the Ethereum Virtual

Machine (EVM) [1]. With the rapid growth of smart con-

tracts, blockchain-based decentralized applications (DApps)

have developed rapidly. DApps have become more and more

popular in the market. In 2021, the annual market value of

transactions related to NFT trading DApps has reached up to

$22 billion. And the total value locked in DApps is measured
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at $189 billion [2]. A typical DApp is an application that

uses web pages or mobile applications as the front-end and

smart contracts as the back-end [3]. Yet, due to the potential

inconsistent behaviors of DApps, users are exposed to the

following risks.

First, the DApp front-end may generate transactions in-

consistent with users’ intentions. For example, a malicious

phishing DApp usually claims that users can claim some

cryptocurrency for free on their websites. However, when a

victim visits the front-end of the DApp and clicks the Claim
button. Contrary to what the victim expected, the DApp not

only did not send any cryptocurrency to his account but instead

generated a transaction that authorized the phishing DApp to

control all assets owned by the victim. As a result, the phishing

DApp easily steals them.

Second, when handling the users’ transactions, the smart

contract may have misbehaviors that are inconsistent with

users’ intentions. For example, assuming the user publishes a

transaction via the front-end to invoke the approve function

of a DApp’s smart contract. The smart contract is expected

to allow an address specified by the caller to use the caller’s

cryptocurrencies (also known as tokens or coins) and sends a

notification. However, if the smart contract does not perform

the above behaviors, or does something else that it should not,

intentionally or unintentionally, the contract is considered to

have misbehaviors, which usually causes not only confusion

but also severe financial losses to users.

We used the following motivating example to illustrate

DApp’s inconsistent behavior. In April 2022, attackers hacked

into the Discord account of BAYC (Bored Ape Yacht Club),

a popular NFT1 DApp, and spread dozens of fake URLs.

These URLs point to scam DApps that were developed by the

attackers. As shown in Fig. 1, they built a front-end page that

closely resembled BAYC and claimed that the DApp would

allow users to mint valuable BAYC NFTs for free. However,

as shown in Fig. 2, when victims click the mint button

prominently displayed on the front page, instead of generating

an NFT mint transaction that the user might expect, the front-

1Non-Fungible Token, which is a kind of uniquely identifiable asset.
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Fig. 1: The front-end of the fake BAYC scam

Fig. 2: The transaction generated by the scam DApp

end generates an approval transaction, which approves all the

victims’ NFT to the scam DApp. This means that the scammer

has full control of the victims’ NFTs and can steal the NFTs

from the victims’ addresses at any time. This scam DApp had

stolen six NFTs from four accounts in one day, with a total

value of over $600,000.

Real-world cases have proved that inconsistent behavior of

DApps can cause severe consequences [4]–[6]. For example,

in July 2022, hackers injected malicious JavaScript code into

the front-end of an NFT trading DApp, PreMint, making the

front-end generate malicious transactions which transfer the

ownership of NFTs from the victim to the hackers. The hackers

ultimately stole over 300 NFTs (worth over $400,000).

However, no studies have been made on the inconsistent

behaviors of DApps. Although there have been plenty of

studies on smart contract consistency and security [7]–[12],

these studies mainly focus on smart contracts, but ignore

inconsistent behaviors related to the front-end of DApps and

fail to examine the DApp as a whole. Such existing studies

cannot detect the inconsistency between the front-end and the

back-end of DApps.

This work aims to identify inconsistent behaviors of DApps

by contrasting the behaviors of DApps that are derived from

the DApp front-end, blockchain wallet, and smart contracts,

respectively. Our approach currently focuses on the DApps

that use web pages as the front-end. Identifying inconsistent

behavior of DApps with mobile applications as the front-end

is left as future work. First, based on user intentions (i.e. the

purpose of a user for using this DApp, e.g. trading tokens),

our approach triggers the front-end to generate transactions by

simulating front-end actions and infers the expected behavior

in the view of user intentions. Second, our approach captures

the transaction data that is sent to the blockchain wallet and

extracts the behavior in the view of transaction semantics.

Finally, by simulating the execution of transactions in the

smart contract and analyzing transaction execution logs, our

approach captures the actual behaviors of smart contracts.

If any two of them do not match, inconsistent behavior is

detected.

However, it is non-trivial to design and implement a prac-

tical tool to detect these inconsistent behaviors due to the

following technical challenges:

C1: Complicated interaction with front-end of DApps.
Due to the enormous space of possible front-end actions, it is

very challenging to explore the front-end actions to correctly

trigger the business logic of the DApp [13]. In addition, many

features of the DApp front-end can only be used when users

have sufficient cryptocurrency. However, it is at risk to use

accounts that have real assets to interact with DApps with

unknown security.

C2: Diversity of DApps. The business logic and usage vary

greatly between DApps. In addition, still in their early stages,

more types of DApps will continue to appear and evolve

rapidly in the future.

C3: Consistency comparison. The behaviors retrieved

from the front-end, blockchain wallet, and smart contract are

implied in front-end actions, transaction data, and transaction

logs respectively, which have large semantic gaps that hinder

consistency comparison.

To address the above challenges, we implement our ap-

proach into a prototype named DAppHunter for identifying

inconsistent behaviors of DApps.

To address C1 and C2, we propose an intention-driven
approach to explore feasible front-end actions for interacting

with the front-end of DApps. To this end, our approach

constructs a 2-layer intention-action graph, including the high-

level user intention graph (UIG) and several low-level front-

end action graphs (FEAG). DAppHunter leverages UIG and

FEAG to guide the interaction with the front-end of DApps.

In addition, to bypass the precondition of using the DApp

front-end, we crafted a blockchain wallet to make the front-

end believe that we have sufficient balance in our wallet,

without putting any real assets at risk. DAppHunter provides a

convenient way for users to easily describe the user intentions

and corresponding front-end actions of a DApp in a training

case. By parsing the training cases, DAppHunter updates the

intention-action graph, thus being able to interact with DApps

that have similar interaction patterns.

To address C3, we come up with the concept of seman-
tic behavior, which has concrete types and parameters for

representing behaviors of DApps. DAppHunter retrieves the

behaviors from different sources and represents them in this

unified form of semantic behavior to bridge semantic gaps.

Contributions. The main contributions of this work are as

follows.
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Fig. 3: The typical workflow of DApps, from a user’s perspec-

tive

• To the best of our knowledge, we take a first step

to identify inconsistent behaviors of blockchain-based

DApps.

• We propose a novel intention-driven approach to interact

with the front-end of DApps for DApp testing.

• We implement our approach in a prototype named

DAppHunter and evaluate it on 92 DApps on Binance

Smart Chain and Ethereum. DAppHunter successfully

identifies 37 DApps with inconsistent behaviors.

To engage the community, we released the source code of

DAppHunter as well as the resources and experimental results

at https://github.com/HuskiesUESTC/DAppHunter.

II. UNDERSTANDING BLOCKCHAIN-BASED DAPPS

This section briefly introduces the background knowledge

of the blockchain, smart contracts, and DApps.

Account. On blockchains, an account is an entity identified

by a blockchain address. There are 2 types of accounts on

Ethereum [14]. (1) User accounts (controlled by private keys).

(2) Contracts (deployed on blockchain and controlled by the

logic of the smart contract code).

Smart Contract. A smart contract is a program that runs

on the blockchain, which can provide methods to be invoked

by other accounts and emit events to inform other applications

that are subscribed to these events [15].

Ethereum Virtual Machine. The Ethereum Virtual Ma-

chine (EVM) is the runtime environment for EVM-compatible

smart contracts [12].

Transaction. Transactions are cryptographically signed in-

structions from accounts [16]. It carries the following infor-

mation: (1) Recipient: the receiving address. (2) Value: the

amount of native token to transfer from sender to recipient. (3)

Data: the data field specifies the invoked method and carries

parameters when the recipient is a smart contract [16].

Blockchain Node. A blockchain node is a computer running

blockchain client software. And a client is an implementation

of an EVM that executes and verifies all transactions in each

block [17]. All the blockchain nodes will reach the same state

to reach a consensus [12].

Blockchain wallet. Blockchain wallets help users manage

their blockchain accounts and sign and publish transactions

to the blockchain easily. Many blockchain communities have

developed their blockchain wallets (e.g. Metamask [18]).

Blockchain-based DApps. Fig. 3 shows the typical work-

flow of a blockchain-based DApp from a user’s perspective.

The front-end of DApp delegates its core functionality to the

smart contracts deployed on the blockchain network. Users

interact with the front-end to use these functions. Then,

the DApp front-end generates the corresponding transactions

according to the user’s actions and sends them to the user’s

blockchain wallet. After the user signs the transaction using

his blockchain wallet, the blockchain wallet publishes the

transaction to the blockchain network. Then, the transaction

will be executed in blockchain nodes.

III. RELATED WORK

To the best of our knowledge, there is no previous work fo-

cusing on inconsistent behaviors of blockchain-based DApps.

Our work is partly related to automated DApp testing, smart

contract verification and automated web application testing.

Automated DApp Testing. Gao et al. proposed an auto-

mated testing technique for DApps, which achieves significant

optimization compared to the random testing approach [19].

Wu et al. present the first framework, Kaya, for testing both

front-end and smart contracts at the same time. Both two

methods focus on helping DApp developers to find bugs in

their DApps, which test the DApps locally and require the

source code of smart contracts. The two methods also pay no

attention to the inconsistent behaviors of DApps. It is worth

noting that their work aims to help the DApp developers to

test the functionality of their code, but our work focuses on

detecting inconsistent behaviors.

Smart Contract Verification. There have been a large

number of approaches for smart contract verification, which

can be roughly divided into 3 categories including formal

verification [10], [11], [20]–[22], symbolic execution [23],

and fuzzing approaches [24]–[28]. However, smart contract

verification studies can only find the bugs and vulnerabilities in

smart contracts, but can not identify the inconsistent behaviors

in DApps.

Automated Web Application Testing. There are plenty

of research results on automated testing of web applications

[13], [29], [30]. Artzi et al. present Artemis [31], a framework

that generates test inputs for JavaScript based on feedback-

directed random testing. Crawljax is a general crawling tool

for AJAX-based applications [32], which infers various paths

within an AJAX application through dynamic analysis of

user interface state changes. And several tools [33]–[35] were

developed to test JavaScript applications based on Crawljax. Li

et al. developed a comprehensive framework for the automatic

testing of client-side JavaScript web applications [29]. These

efforts can only be used to test traditional web applications,

and detecting inconsistent behavior of DApps also requires

bringing smart contracts and wallets into the testing scope.

IV. DESIGN AND IMPLEMENTATION OF DAPPHUNTER

Our approach aims to identify inconsistent behaviors of

blockchain-based DApps. We implemented our approach into

a prototype named DAppHunter. We introduce the design and

implementation details in this section.
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A. Definitions

For readers to better understand the following content, we

first give definitions of key concepts used in DAppHunter.

User Intention: A user intention refers to the periodic

purpose when using the DApp front-end.

Front-end Action: A front-end action refers to an operation

on an interactive element on the front-end (e.g. click a button

or input a number).

Semantic Behavior: We let τ to represent the type of

behaviors of DApps (e.g. transfer, approve, etc) and let ρ to

denote a parameterized description of the behavior (e.g. the

value of transferred cryptocurrency, the receiver of transfer

action, etc). A behavior of DApp can be denoted in β(τ, ρ).
Two behaviors, β1(τ1, ρ1) and β2(τ2, ρ2) are consistent when

τ1 matches τ2 and ρ1 matches ρ2.

Front-end State & State Changes: The front-end state

refers to the internal structure of elements on a front-end web

page. We use the front-end state to determine whether a front-

end action is feasible (e.g. whether there is an input form or

a button on the web page). We further define a state change

as a change on the front-end caused by either front-end action

or server-side state changes propagated to the front-end.

Intention-Action Graph. Intention-action graph is used to

guide the automated interaction with the front-end of DApps in

DAppHunter. We define the intention-action graph as follows:

• An intention-action graph is a 2-layer graph, which

consists of a high-level user intention graph (UIG) and

several low-level front-end action graphs (FEAG).

• A node Na(state, action) in FEAG represents a specific

front-end action. The action represents a front-end oper-

ation (e.g. clicking an element). And state represents the

front-end state required to locate an element and perform

the action (e.g. there exists an element on the page

with certain keywords). An edge Ea(Na1, Na2) in FEAG

denotes that, after performing front-end action Na1, Na2

is chosen to perform.

• A node Ni in UIG represents an user intention, and an

edge Ei(Ni1, Ni2) denotes that, after user intention Ni1

is realized, the intention Ni2 is chosen as the next user

intention to realize.

• Each node Ni in UIG has a corresponding FEAG, and a

path (Na1, Na2, ..., Nan) in FEAG denotes one possible

front-end action sequence to realize the user intention Ni.

B. Overview

Fig. 4 shows the architecture of DAppHunter which consists

of two major parts. (1) Front-end interaction: Under the

guidance of the intention-action graph, DAppHunter explores

feasible user intention and the corresponding front-end action

sequence to realize the user intention. DAppHunter uses a

front-end robot to simulate the front-end action sequence

and trigger the front-end to generate a transaction by sim-

ulating these front-end actions. (2) Inconsistent behavior
identification: First, DAppHunter takes in the user intention,

and corresponding front-end sequence to infer the expected

behavior in the view of user intention, βe(τe, ρe). Second,

Fig. 4: Architecture of DAppHunter

by parsing the transaction data that the front-end generated,

DAppHunter extracts the behavior suggested by the semantic

of the transaction data, βt(τt, ρt). Third, DAppHunter sim-

ulates the transaction by executing the smart contract in a

blockchain node, and retrieving the transaction logs to obtain

the actual behavior of the smart contract, βs(τs, ρs). At last, by

contrasting βe, βt and βs, DAppHunter reports inconsistent

behaviors if any two of them do not match.

C. Front-end interaction

To address the technical challenges C1 and C2, we designed

and implemented a novel user-intention-driven approach.

Overall, our approach consists of two steps: Step-1:
Constructing and Updating the Intention-Action Graph.
DAppHunter constructs and updates the intention-action graph

by parsing the DApp user intentions and interaction patterns

summarized by manual analysis. Step-2: Front-end Action
Sequence Exploration. Under the guidance of the intention-

action graph, DAppHunter automatically explores the front-

end operation sequence and uses a front-end robot to simulate

these operations. In addition, to bypass the precondition of

using the DApp front-end, we crafted a blockchain wallet to

make the front-end believe that we have sufficient balance in

our wallet.

The insight behind this approach is that, though the front-

end action space is enormous, the optional front-end actions

to realize a specific user intention is limited. Therefore, by

dividing the front-end actions into different FEAGs, we can

prune the huge space of front-end actions into a meaningful

and feasible set of front-end action sequences. In addition,

our manual analysis of about 100 DApps including exchanges,

NFTs, and loans revealed the purposes of users using these

DApps can be summarized by a few user intentions. The user

intentions are listed in Table. I.

More importantly, the user-intention-driven approach allows

us to leverage the semantic information of user intention

to infer the expected behaviors of DApps. On the contrary,

randomly generated front-end action sequences have very
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Fig. 5: The intention-action graph visualization.

little meaningful semantic information for inferring expected

behaviors due to lots of ambiguous, repetitive, and pointless

front-end actions.

Fig. 5 presents the simplified visualization of an intention-

action graph instance. On the upper layer, DAppHunter

searches for user intentions that can be realized in the UIG

in the current front-end state. Then, DAppHunter explores a

specific front-end action sequence that can realize the intention

in the corresponding FEAG.

As shown in Fig. 4, the Graph Parser automatically

explores the front-end action sequence in the intention-action

graph. Then, the Robot simulates the front-end actions.

Besides, the crafted MetaMask wallet enables DAppHunter

to impersonate the big whale accounts that hold numerous

cryptocurrencies to bypass the preconditions for using the

front-end of DApps. The details of the 2 steps of our approach

are as follows:

TABLE I: The list of user intentions supported by DAppHunter

Intention Description

Connect Connect the wallet to the front-end of this DApp
Transfer Transfer some cryptocurrency to another address

Swap Exchange one type of cryptocurrency for another
Approve Approve an address to access the user’s assets
Deposit Put some assets into DApps

Withdraw Retrieve assets from DApps
Mint Mint cryptocurrencies or NFTs

Claim Retrieve the profits of deposited assets

Step-1: Constructing and Updating the Intention-Action
Graph. DAppHunter adopts a training process to construct

and update the intention-action graph. To reduce manual

efforts of constructing the graph, DAppHunter provides a

convenient way for users to write training cases for DApps. A

training case is a structured file similar to YAML (a markup

language). Each training case consists of two parts: (1) The

user intention sequence. (2) The front-end actions that realize

each user intention in the intention sequence. Fig. 6 shows a

simplified training case example.

1 intention-sequence:
2 connect
3 swap
4
5 intention:
6 name: connect
7 action-sequence:
8 click-connect:
9 operation: click

10 keywords: "connect" "wallet"
11 choose-wallet:
12 operation: click
13 keywords: "metamask"
14
15 intention:
16 name: swap
17 action-sequence:
18 select-currency:
19 operation: click
20 keywords: "currency" "select"
21 input-amount:
22 operation: input
23 keywords: "amount"
24 confirm-swap:
25 operation: click
26 keywords: "swap"
27 ...

Fig. 6: A simplified training case example

Each training case can be viewed as a subgraph of the

intention-action graph. For example, the training case shown

in Fig. 6 defines a UIG with 2 intention nodes (i.e. connect and

swap, Line 2-3) and 2 corresponding FEAGs (Line 5-13, Line

15-29). DAppHunter will merge the subgraph described by

the training case into the current intention-action graph so that

users do not need to rewrite the training case when detecting

DApps with similar interaction patterns. DAppHunter follows

the following steps to merge the training case: (1) Insert
intention nodes and edges into UIG. When the intention

node defined in the intention sequence of the training case

does not exist in the UIG, a new intention node will be added

to the UIG, as well as its predecessor node, and edges between

them will be added recursively until the predecessor node is

already in the UIG. (2) Update FEAG of intention nodes.
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The process of updating a FEAG is similar to (1), the front-

end action nodes and edges denoted in the training case will

be inserted into the FEAG of each intention node.

Step-2: Front-end Action Sequence Exploration. Guided

by the intention-action graph and the execution result of front-

end action, DAppHunter infers the next front-end action to

realize a specific user intention. By executing this process

iteratively, DAppHunter can explore the necessary front-end

action sequence to complete a transaction.

As presented in Alg 1, starting from the start node of UIG,

Graph Parser traverses UIG and monitors the front-end

state. For each node in the UIG, Graph Parser will search

for a feasible action sequence in its corresponding FEAG.

First, Graph Parser initiates exploration from the start

action node (Line 4) and then tries to find an executable

element by the metadata extracted from the adjacent node

(Line 7-10). Then, the element is located (Line 11), and the

Robot will execute the corresponding action (Line 12). If it

detects a front-end state change, which means the currently

explored action is successfully executed, this explored action

will be added to the front-end action sequence. DAppHunter

repeats this procedure until an unrecoverable error occurs

(Line 13-14), or a transaction is successfully triggered (Line

15-16). The explored front-end action sequence will be used

to infer the expected behavior of the DApp.

Algorithm 1 Front-end Action Sequence Exploration

Input: User intention graph: UIG
Output: Front-end action sequence: seq

1: nodei ← start node of UIG

2: while nodei �= end node do
3: fag ← front-end action graph of nodei
4: nodea ← start node of fag
5: seq ← ∅

6: while nodea is not end node of fag do
7: for n ← adjacent nodes of nodea do
8: state ← current front-end state
9: if n is not feasible in state then

10: continue
11: element ← Robot.LocateElement(n.state)

12: result ← Robot.Execute(element, n.action)

13: if result is unsolved error then
14: return ∅

15: else if result is transaction triggered then
16: return seq
17: else if result is state changed then
18: nodea = n
19: seq ← seq + nodea
20: statei ← current front-end state
21: nodei ← NextIntentionNode(nodei, statei)

Bypassing the requirements in the front-end of DApps.
Empirically, having sufficient balance to cover all expenses

is the basic requirement for using DApps. Therefore, the

front-end of a DApp query account balance frequently from

multiple data sources including blockchain explorers and smart

contracts.

Unfortunately, using an account that holds real assets to

interact with a DApp whose security is unknown is very

dangerous. Therefore, we used a modified MetaMask wallet

to impersonate some accounts with sufficient assets to interact

with these DApps. In particular, the DApps use this function

getAccounts to query the accounts that are managed by

MetaMask. We first collect 2 big whale accounts that have

a lot of cryptocurrencies. Then, we crafted the function and

replaced the real accounts with collected big whale accounts.

Therefore, when the DApp front-end tries to query the user’s

account from MetaMask, they will get these big whale ac-

counts and query their cryptocurrency balance.

D. Identifying Inconsistent Behaviors

To identify inconsistent behaviors, we first extract three

behaviors from three different sources: front-end, blockchain

wallet, and smart contract.

The major challenge (C3) of identifying inconsistent behav-

iors is the large semantic gap between low-level data (i.e. the

transaction data sent to the blockchain wallet and the logs of

transactions retrieved from the smart contracts) and the very

high-level user intentions and front-end actions retrieved from

the front-end.

Bridging the Semantic Gap. To address the technical

challenge C3, we come up with the concept of semantic

behavior to bridge the semantic gap.

In particular, DAppHunter currently supports 8 types of

user intentions. Except for the connect intention, 7 of them

will generate transactions. Therefore, we defined 7 types of

semantic behaviors. The mapping of user intention, transaction

data, transaction log, and semantic behavior is shown in

Table. II.

DAppHunter adopts a workflow containing 4 stages for

identifying inconsistent behaviors. We will use a real-world

example to illustrate the workflow (see VI-A).

Stage-1: Inferring Expected Behavior. The semantic of

expected behavior is inferred from the front-end action se-

quence generated by Graph Parser. First, according to the

user intention of the front-end action sequence, DAppHunter

inferred the type of the semantic behavior. DAppHunter will

extract the values from the front-end states and the values

that Robot entered to infer the parameters of the semantic

behavior.

For the real-world example in VI-A, DAppHunter iden-

tified the user intention approve by locating the action

of clicking Approve button in the front-end action se-

quence. By extracting the token name from the front-end state,

DAppHunter identified cryptocurrency token to be approved

is ZEPE (shown in Fig. 8). Note that, since there is no

information about the spender parameter on the front-end,

it will be set to unknown. Therefore, DAppHunter inferred

the expected behavior in the form of semantic behavior, i.e.

Approve(asset: ZEPE, spender: unknown).
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TABLE II: The mapping of semantic behavior, user intention, transaction data, and transaction logs

User Intention Transaction Data
Keywords

Transaction Log
Conditions

Semantic Behavior
Type(Parameters)

Transfer transfer
(Exist Transfer event E and E.receiver = receiver and
E.value = value) or (Exist Transaction Tx and Tx.to = receiver
and Tx.value = value)

Transfer(receiver, value)

Swap swap, exchange
Exist Transfer events sequence E1, E2, ..., En and E1.asset =
assetin and En.asset = assetout and E1.from = En.to

Swap(assetin, amountin, assetout, amountout)

Approve
approve,
approval

Exist Approval event E and E.asset = asset and E.spender =
spender

Approve(asset, spender)

Deposit
deposit, transfer,
approve

(Exist Transfer event E and E.from = depositor and
E.amount = amount and E.asset = asset) or (Exist Deposit
event E and E.depositor = depositor and E.asset = asset)

Deposit(asset, amount)

Withdraw withdraw
Exist Transfer event or Withdraw event E and E.receiver =
receiver and E.asset = asset and E.amount = amount

Withdraw(asset, amount, receiver)

Mint mint, transfer
Exist Transfer event E and E.to = receiver and E.from =
NULL address, and E.asset = asset and E.amount = amount

Mint(asset, amount, receiver)

Claim claim
Exist Transfer event E and E.asset = asset and E.amount =
amount and E.to = DAppHunter

Claim(asset, amount)

Stage-2: Extracting The Behavior of Generated Trans-
action. The transaction data is encoded into hex bytes starting

with a 4-byte method id, which is the first 4 bytes of the hash

of the method’s name and parameter list. To extract transaction

semantics from the transaction data, DAppHunter queries the

original function name and parameter list from a method id

database [36]. Then, DAppHunter uses the parameter list

to reconstruct the Application Binary Interface and decodes

all the parameters in the transaction data. With the method

name recovered and the parameters decoded, according to the

keyword in the method name and the type of parameters shown

in Table. II, DAppHunter maps the transaction into a semantic

behavior suggested by transaction data.

For the example in VI-A, DAppHunter recovered the

function name, Transfer, and decoded the receiver (i.e.

0xBca..33AE) and value (i.e. 2871.99) from the transac-

tion data. Therefore, DAppHunter extracted the behavior

of the transaction data in the form of semantic behav-

ior, i.e. Transfer(receiver: 0xBca..33AE, value:
2871.99).

Stage-3: Detecting Behavior of Smart
Contract. To detect smart contract behaviors,

DAppHunter uses the eth_sendTransaction and

eth_getTransactionReceipt remote process calls

to execute the transaction on the local node and retrieve

its execution logs. DAppHunter analyzes the logs to detect

the events that are emitted during the transaction execution.

Similarly, according to whether the transaction logs meet the

conditions shown in Table. II, DAppHunter first maps the

logs into a semantic behavior. And the parameters of the

semantic behavior are extracted from the execution logs.

For the real-world example in VI-A, after simulating the

transaction data in stage-2 in the local node and analyzing

the transaction logs, DAppHunter identified a transaction Tx
where Tx.to = address and Tx.value = 2871.99 in the logs.

Since the transaction log meets the condition of a Transfer
semantic behavior. DAppHunter retrieved the behavior of

the smart contract, Transfer(receiver: 0xBca..33AE,
value: 2871.99).

Stage-4: Detecting Inconsistency. DAppHunter com-

pares the behaviors of the results of stage-1, stage-2, and

stage-3, which are represented in the form of semantic be-

haviors, βe(τe, ρe) and βt(τt, ρt) and βs(τs, ρs) from the

front-end, blockchain wallet and smart contract respectively.

DAppHunter reports the following 3 kinds of inconsistent

behaviors.

Transaction Type Inconsistency. DAppHunter compares

the semantic behavior types of βe(τe, ρe) and βt(τt, ρt) (i.e.

τe and τt). If τe and τt mismatch, DAppHunter reports a

transaction type inconsistency, indicating that the front-end

generates an incorrect transaction.

Transaction Parameters Inconsistency. By comparing

the parameters of βe(τe, ρe) and βt(τt, ρt), i.e. ρe and ρt,
DAppHunter reports a transaction parameter inconsistency if

any parameter in ρe and ρt mismatches.

Contract Behavior Inconsistency. By comparing βe, βt

and βs, a contract behavior inconsistency is reported if βs

does not match any one of βe or βt. It should be pointed out

that due to factors such as cryptocurrency price fluctuations,

exchange rate changes, etc., the amount parameters of seman-

tic behaviors such as swap and mint are considered consistent

with small errors.

For the real-world example in VI-A, in stage-1,

DAppHunter inferred the βe: Approve(asset: ZEPE,
spender: unknown). However, in stage-2, the βt

retrieved by DAppHunter is Transfer(receiver:
0xBca..33AE, value: 2871.99). Since the type of

βe is Approve, which is inconsistent with the type of

βt. Therefore, DAppHunter reported a transaction type

inconsistency.

When DAppHunter detects inconsistent behavior in a

DApp, it generates a text report for the users. The report

contains two parts of information. (1) The types of inconsistent

behavior are shown in the report. (2) The report also shows

the semantic behavior types and parameters of βe(τe, ρe) and

βt(τt, ρt) (i.e. τe and τt) to the users so that they can better

understand the functionality of the DApp under testing.
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V. EVALUATION

In this section, we evaluate DAppHunter and present the

experiment results to answer the following research questions.

We also give some suggestions and for wallet providers and

users at the end of this section.

• RQ1. Can DAppHunter reduce the manual effort when

detecting inconsistent behavior of DApps?

• RQ2. What is the accuracy of DAppHunter in identifying

inconsistent behaviors of DApps?

• RQ3. What are the major causes of inconsistent behaviors

of DApps?

A. Experiment Setup

We deploy DAppHunter on a laptop, with MacOS Monterey

12.3 as the operating system and Chrome browser of version

101.0.4951.54 installed. The MetaMask v10.8.2 is crafted to

impersonate the big whale accounts on BSC and Ethereum.

B. DApp Subjects

We obtain the URLs of DApp projects from the DApp

browser (DAppRadar), blockchain browsers (BSCscan and

Etherscan), and social media (Discord, Twitter, and Telegram

channels). Since the front-end page of the DApp needs to

interact with the blockchain wallet through a JavaScript library

web3.js, we used a web crawler to check if these URLs are

alive, and determine if these URLs are the front-end of DApps

according to whether the website contains the web3.js library.

Finally, we collected 92 DApps with front-end at the time of

the experiment from February 2022 to July 2022.

According to the functions of these DApps, we divided the

collected DApps into 4 categories, including NFT, exchange,

loan, and yield farming. The number of DApps in each

category and the major intentions of users when using them

are listed in Table III.

TABLE III: The Major user intentions of collected DApps

Category # of DApps Major intentions

NFT 12 Mint, Transfer, Approve
Exchange 67 Swap, Approve

Loan 6 Stake, Withdraw, Approve
Yield Farming 7 Deposit, Claim, Approve

C. Results

1) RQ1: Can DAppHunter reduce the manual effort when
detecting inconsistent behavior of DApps: To answer RQ1,

we conducted a case study to compare DAppHunter with the

existing DApp automated testing framework.

Kaya [37] is an automation testing framework for DApps.

Using Kaya, users can describe the front-end behaviors and

the expected value of variables in the smart contract in an

XML-like file. Then, Kaya will parse and simulate the front-

end behaviors in the web browser. Since the process of

DAppHunter and Kaya’s automatic interaction with the front-

end is similar, we choose to use Kaya for comparison to

evaluate whether DAppHunter can reduce the manual effort

required for automatic interaction with the front-end.

In the case study, we have one of the authors learn how to

use Kaya. Then, we sampled 10 exchange DApps from the

collected 92 DApps, and let the author write and debug the

testing cases for them until Kaya can automatically perform a

swap transaction on the front-end. Then, we asked the author

to write training cases using DAppHunter for the 10 exchange

DApps as well. The simplified testing case example of Kaya

is shown in Fig. 7.

As shown in Fig. 7, users of Kaya need to explicitly specify

the elements on the page that need to be manipulated in a

front-end action, and provide their attributes such as class, id,

or tag so that Kaya can locate them on the page. To complete a

swap transaction for one DApp, the author needs to add 10-12

front-end action items to the testing case. And each front-end

action item is completed in 10 lines of XML on average. To

sum up, the author needs to write about 1070 lines of XML

to enable Kaya to automatically interact with the 10 DApps.

In contrast, when using DAppHunter, the author first writes

a training case for one of the 10 DApps. In this training case,

the author uses 12 lines of YAML to describe 2 intention

nodes (i.e. connect and swap) and their connections. Then,

the author uses 48 and 77 lines of YAML to construct the

FEAG of connect and swap respectively. After this process,

DAppHunter constructed the initial intention-action graph.

Then, the author used DAppHunter to test the 10 DApps

and found that the initial intention-action graph has been

able to complete a swap transaction on 7 DApps. Then,

the author gradually adds training cases in the same way.

After adding 4 training cases, DAppHunter has been able to

complete the swap transaction on all 10 DApps since the

intention-action graph has covered all the front-end action

paths to complete a swap transaction. Finally, the author

used 4 training cases, 468 lines of YAML in total to enable

DAppHunter automatically interact with the 10 DApps.

In addition, in this case study, we found that Kaya has

the following disadvantages compared with DAppHunter. (1)

Since Kaya can not bypass the balance checking in 7 of 10

DApps, it failed to complete the swap transaction on their

front-end pages. The author has to intervene manually to make

the test continue. (2) The author has to write 10 testing cases

one by one when using Kaya. In contrast, since DAppHunter

constructs the intention-action graph and is able to interact

with similar DApps without writing testing cases one by

one, the author only needs to complete 4 training cases for

DAppHunter.

Therefore, it can be concluded that, compared to Kaya [37],

DAppHunter requires almost no additional manual interven-

tion and can bypass the balance check of most DApps, and

reduces the manual effort when testing exchange DApps (10

testing cases vs 4 training cases, 1070 lines vs 468 lines).
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Fig. 7: A testing case example of Kaya

Answer to RQ1. Fewer lines of code are required

when writing test cases compared to the existing DApp

testing framework. And DAppHunter requires almost

no additional manual intervention.

2) RQ2: What is the accuracy of DAppHunter in identify-
ing inconsistent behaviors of DApps: With the intention-action

graph initialized, we conducted an evaluation experiment on

the collected 92 DApps. Of the 92 DApps, DAppHunter failed

to trigger transactions on the front-end of 33 DApps, including

7 NFTs, 19 exchanges, 4 loans, and 3 yield farming. The

reasons for not triggering the transaction are as follows: (1) 3

NFT DApps require users to first register an account managed

by the project party, and then associate it with their blockchain

accounts. (2) The smart contracts of 14 exchanges, 2 loans and

1 yield farming DApps do not have enough funds for swap or

withdraw transactions, resulting in the front-end refusing to

generate transactions. (3) Due to the failure of the front-end or

server, the DApp front-end did not respond to DAppHunter’s

operations on the front-end.

There are 37 inconsistent DApps detected by

DAppHunter, including 35 scam DApps and 2 DApps

whose front-end was hacked. The results are shown in

Table. IV.

We define a false negative as a DApp that behaves incon-

sistently but is regarded as consistent by DAppHunter. And a

false positive refers to a DApp that behaves consistently but

is regarded as an inconsistent one by DAppHunter mistakenly

due to incorrect front-end actions, mistaken inference of

expected behavior, and analysis of contract behavior. We man-

ually checked the DApps that are reported to be inconsistent

to evaluate the accuracy of DAppHunter.

As shown in Table. IV, DAppHunter successfully detected

37 inconsistent DApps. With manual analysis of the DApps

that are reported to be consistent, we also confirmed that

DAppHunter did not produce any false negatives. As of

August 2022, due to reports from victims, the URLs and smart

contracts of the 35 scam DApps have been blacklisted and

TABLE IV: Results of detected inconsistent DApps (P -

Positive, N - Negative, TP – True Positive, FP – False Positive,

TN – True Negative, FN - False Negative)

Category Samples(P/N) Reported TP FP TN FN

NFT 12(2/10) 2 2 0 10 0
Exchange 67(34/33) 34 34 0 33 0

Loan 6(6/0) 0 0 0 6 0
Yield farming 7(1/6) 1 1 0 6 0

tagged by Peckshield [38] and MetaMask [39].

Answer to RQ2. DAppHunter is accurate in identifying

inconsistent behaviors of DApps.

3) RQ3: What are the major causes of inconsistent behavior
of DApps: We further manually investigated the reported

inconsistent DApps and revealed the following major reasons

behind the inconsistent behaviors.

R1. Scams. Among the 37 detected inconsistent DApps in

our experiments, 35 of them are scams. These scams either

generate inconsistent transactions or deploy smart contracts

that have misbehaviors [6], [40], [41].

R2. Front-end hacking. In our experiment, 2 inconsistent

DApps are DApps whose front-end is hacked. One hacked

front-end was recreated based on the malicious script disclosed

by the blockchain wallet provider, ZenGo [42]. And another

hacked DApp was found via the experiment result. Hackers

can hack the front-end of DApps to inject malicious code into

the front-end page, which can generate transactions that are

inconsistent with the users’ intentions, and steal the mnemonic

phrase of users’ wallets.

Answer to RQ3. Manual investigation shows that there

are 2 major reasons behind the inconsistency, including

scams and front-end hacking.

D. Recommendations

Recommendations for wallet providers. The blockchain

wallet is currently the only line of defense for users against

inconsistent transactions. Therefore, when asking users to

confirm sensitive transactions, wallets should explicitly remind

users of the risks of confirming the transaction. From the

experimental results, no front-end (even if it contains malicious

scripts) can pose a threat to the security of the wallet. However,

attackers often use some social engineering methods to trick

blockchain wallet users into handing over mnemonic words or

private keys. In addition, since the private key is stored in the

blockchain wallet, we strongly recommend that the blockchain

wallet provider use a secure private key encryption storage

algorithm to prevent attackers from cracking the user’s private

key through the wallet’s storage file.

Recommendations for DApp users. The DApp users are

suggested to always double-check the DApps that are connect-

ing to their wallets and not confirm transactions unless they

are 100% sure of what they are doing. More importantly, never
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Fig. 8: The front-end of ZEPE.io

1 function batchTransfer(address[] memory holders
, uint256 amount) public payable {

2 for (uint i = 0; i <holders.length; i++) {
3 emit Transfer(address(this), holders[i],

amount)
4 }
5 }

Fig. 9: The batchTransfer function in the smart contract of

ZEPE.io

trust DApps that are too good to be true (e.g. a huge amount

of airdropped tokens).

VI. CASE STUDIES ON INCONSISTENT DAPPS

We further conducted case studies of the identified

inconsistent DApps for measuring the financial losses

that they caused. The partial list of these DApps is

shown in Table. V. The full list can be found at

https://github.com/HuskiesUESTC/DAppHunter.

By analyzing the related transactions with these DApps, we

summarized 2 categories of scam DApps that have not yet

received widespread attention, named fake airdrop and hidden

fee arbitrage scam DApps.

A. Fake Airdrop Scams

An airdrop, in the cryptocurrency business, is a marketing

stunt that involves sending coins or tokens to blockchain

accounts to promote awareness of a new cryptocurrency.

However, some phishing scams leverage the airdrop to lure

victims to use their DApp front-end which contains malicious

logic. The ZEPE.io listed in Table. V is an example of

fake airdrop scams. It airdropped 80,000 ZEPE tokens to

each victim’s account. The scammer also created a pool of

1 function balanceOf(address account) public view
virtual override returns (uint256) {

2 if (!_unlocked[account]) {
3 // this is a constant number 80,0000
4 return _airdropAmount;
5 } else {
6 return _balances[amount];
7 }
8 }

Fig. 10: The balanceOf function in the smart contract of

ZEPE.io

ZEPE and BNB (the native token of Binance Smart Chain)

on PancakeSwap (the most popular decentralized exchange

market on Binance Smart Chain). A pool of two kinds of

tokens is used to exchange one kind of token for the other.

When the victims noticed that many ZEPE tokens are air-

dropped to their wallets, they wanted to trade them for BNB

on PancakeSwap. However, their transaction of exchanging

ZEPE will fail and the error message asked them to go to the

front-end of ZEPE.io to approve the ZEPE token first.

As shown in Fig. 8, when the victims use the front-end

to approve the ZEPE token by clicking the eye-catching

Approve button on the page, the front-end is expected to

generate a transaction that approves the ZEPE token to the

address of a cryptocurrency exchange smart contract. However,

the malicious front-end generates a transfer transaction to

send all the BNB (the native cryptocurrency of Binance Smart

Chain) in this victim’s wallet to the account of the scammer.

The semantic of the former is to approve an account to access

the user’s ZEPE token while the semantic of the latter is to

transfer BNB to the scammer.

We analyzed the transactions related to ZEPE.io and

found that the smart contract of this DApp has airdropped its

ZEPE token to 5,673,269 addresses using a function named

batchTransfer. Under normal circumstances, the transac-

tion fees required to make so many transactions are estimated

to be more than $60,000. However, we found the scammer

only spent about $5,100 to make all these transactions, which

is quite anomalous. Since the smart contract of ZEPE.io
is not open-source, we decompiled its smart contract for

inspection. As shown in Fig. 9, the batchTransfer func-

tion of the smart contract does not transfer any tokens to

the victim’s wallet but merely emits a Transfer event to

mislead the victim’s wallet that it has received the tokens.

The transaction fee required for merely emitting a Transfer
event is 10 times less than executing a normal transfer
transaction. Fig. 10 shows the balanceOf function of the

smart contract. The function is expected to return the number

of tokens held by account. However, when the victim calls

the balanceOf function of ZEPE.io to query their ZEPE

token balance, it checks whether the account is unlocked.

Since only the accounts of the scammers are unlocked, it

returns a fixed fake value.

Since the smart contracts of fake airdrop scam DApps only

emit the Transfer event instead of transferring tokens, the

cost of deploying a fake airdrop scam DApp and conducting a

massive fake airdrop is much lower than what is generally

believed. Second, since the low cost of deploying a scam

DApp, the scammers tend to shut down DApps quickly after

several victims have taken the bait and used the profits from

the previous scam DApp to redeploy a new one to avoid being

blacklisted.

B. Hidden fee arbitrage scams

The 0Fees listed in Table. V is an example of hidden

fee arbitrage scams. The scam DApps of this category ex-

ploit inconsistencies between transaction and smart contract
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Fig. 11: The approve transaction of 0Fees, obtained on BSCscan

TABLE V: The partial list of inconsistent DApps

DApp-Name Front-End-URL Contract Address Type of Inconsistency

VeloChain Velochain.io 0xc7ef1bff46cd025509cf5e55fa5cd5c14793cbff Transaction Type Inconsistency
GoFlux GoFlux.io 0xb16600c510b0f323dee2cb212924d90e58864421 Transaction Type Inconsistency
VERA TheVera.io 0x0df62d2cd80591798721ddc93001afe868c367ff Transaction Type Inconsistency
EVER TheEver.io 0x5190b01965b6e3d786706fd4a999978626c19880 Transaction Type Inconsistency
AIR BestAir.io 0xbc6675de91e3da8eac51293ecb87c359019621cf Transaction Parameter Inconsistency

ZEPE Zepe.io 0x119e2ad8f0c85c6f61afdf0df69693028cdc10be Transaction Type Inconsistency
0Fees 0fees.online 0xcfa18ee4c639bc1f058a25da5dba26d8a4c895be Smart Contract Misbehavior

0Army 0Army.io 0x4a5fad6631fd3df66f23519608185cb96e9a687d Smart Contract Misbehavior
BNBRoyal BNBRoyal.io 0x8bfed23fef18086c912757d91f82e903c7ce8fc6 Transaction Parameter Inconsistency

TABLE VI: The detected hidden fee arbitrage scams

DApp-Name Address Profit $ Loss of
Victims $ # of Victims

0Fees 0xcfa18ee4c639bc1f058a25da5dba26d8a4c895be 2,911 4,657 302

0Army 0x4a5fad6631fd3df66f23519608185cb96e9a687d 2,043 3,268 212

CGB 0x7e6202903275772044198d07b8a536cc064f8480 12,684 20,294 1,997

behaviors. The 0Fees first sent airdrops to the victim’s

address. When a victim tried to trade these tokens on an

exchange market, they were asked to approve the received

token to the exchange market, which is harmless under normal

circumstances. However, The approve function of 0Fees’s

smart contract that handles the approve transaction has

malicious logic.

Fig. 11 shows an approve transaction that a victim sent to

0Fees. It is worth noting that the transaction fee is $14.20,

which is quite anomalous. Normally, an approve transaction

should cost between $0.02 and $0.1.

Since the smart contract of 0Fees is not open-sourced,

we decompiled its bytecode and found that the approve
function of 0Fees fires a transaction to mint CHI tokens,

which consumes a huge amount of transaction fee. And all

the minted CHI tokens were sent to the contract address of the

scam DApp, which is inconsistent with the user’s intention.

Other detected hidden fee arbitrage scams are shown in

Table. VI, it can be concluded that the number of victims

of these three scam apps exceeds 2,000. This is because

the hidden fee arbitrage scams leverage the smart contract

misbehaviors, which are more stealthy and harder to spot.

Due to the insidious nature of this scam model, more and

more scam projects like 0Fees are emerging on the Binance

Smart Chain, which needs to be brought to the attention of

the community.

To sum up, the inconsistent DApps, especially those scams,

have caused severe financial losses. By investigating the trans-

actions related to the scammers’ accounts, we estimated that

the 37 inconsistent DApps caused a loss of over $1.1 million

in total. Since the cost of creating and running a scam DApp

is much lower than we thought, scammers can easily rebuild

new scam DApps quickly after several hits to avoid being

blacklisted. We will keep improving DAppHunter to help the

community identify scams and other inconsistent DApps.

VII. CONCLUSION

In this work, we proposed DAppHunter, a prototype for

identifying inconsistent behaviors of blockchain-based DApps.

Our approach identifies inconsistent behaviors of DApps by

contrasting the behaviors from the DApp front-end, blockchain

wallet, and smart contract. This work has some limitations. We

admit that the experiment on the ease of use of this work may

introduce a bias since ”manual effort” is a subjective metric.

Our study requires some manual effort to construct and update

the intention-action graph and we will try to automate the

whole process in our future work.
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