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Abstract. We propose a game-based method for synthesizing a run-
time enforcer for a reactive system to ensure that a set of safety-critical
properties always holds even if errors occur in the system due to design
defect or environmental disturbance. The runtime enforcer does not mod-
ify the internals of the system or provide a redundant implementation;
instead, it monitors the input and output of the system and corrects
any erroneous output signal that may cause a safety violation. Our main
contribution is a new algorithm for synthesizing a runtime enforcer that
can respond to violations instantaneously and guarantee the safety of the
system under burst error. This is in contrast to existing methods that
either require significant delay before the enforcer can respond to viola-
tions or do not handle burst error. We have implemented our method in
a synthesis tool and evaluated it on a set of temporal logic specifications.
Our experiments show that the enforcer synthesized by our method can
robustly handle a wide range of properties under burst error.

1 Introduction

A reactive system is a system that continuously responds to external events.
In practice, reactive systems may have strict timing requirements that demand
them to respond without any delay. Furthermore, they are often safety-critical
in that a violation may lead to catastrophe. In this context, it is important to
guarantee with certainty that the system satisfies a small set of safety properties
even in the presence of design defect and environmental disturbance. However,
traditional verification and fault-tolerance techniques cannot accomplish this
task. In particular, fault-tolerance techniques are not effective in dealing with
design defects whereas verification techniques are not effective in dealing with
transient faults introduced by the environment. Furthermore, formal verification
techniques such as model checking are limited in handling large designs and
third-party IP cores without the source code.

In this paper, we propose a new method for synthesizing a runtime enforcer
to make sure that a set of safety-critical properties are always satisfied even if the
original reactive system occasionally makes mistakes. Unlike the replica in fault-
tolerance techniques, our runtime enforcer is significantly cheaper in that it does
not attempt to duplicate the functionality of the original system. Instead, it aims
at preventing the violation of only a handful of safety properties whose violations
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may lead to catastrophe. Our approach also differs from classic methods for
synthesizing a reactive system itself from the complete specification [14], which
is known to be computationally expensive. In our approach, for example, it
is perfectly acceptable for the system to violate some liveness properties, e.g.,
something good may never happen, as long as it guarantees that safety-critical
violations never happen.

Fig. 1. Synthesizing the safety shield.

The overall flow of our synthesis
method is shown in Fig. 1, which takes
a safety specification ϕs of the reactive
system D(I,O) as input, and returns
another reactive system S(I,O,O′) as
output. Following Bloem et al. [3], we
call S the shield. We use I and O
to denote the set of input and output
signals of the original system, respec-
tively, and define the runtime enforcer
S(I,O,O′) as follows: It takes I and O
as input and returns a modified version of O as output to guarantee the com-
bined system satisfies the safety specification; that is, ϕs(I,O′) holds even if
ϕs(I,O) is violated. Furthermore, the shield modifies O only when ϕs(I,O) is
violated, and even in that case, it tries to minimize the deviation between O
and O′. This approach has several advantages. First, since S is a reactive sys-
tem, it can correct the erroneous output in O in the same clock cycle. Second,
since S is agnostic to the size and complexity of the system D, it is cheaper and
more scalable than fault-tolerance techniques. Finally, the approach works even
if the design contains third-party IP cores.

Bloem et al. [3] introduced the notion of safety shield and the first algorithm
for synthesizing the runtime enforcer, but the method does not robustly handle
burst error. Specifically, the shield synthesized by their method minimizes the
deviation between O and O′ only if no two errors occur within the same k steps.
If, for example, another error occurs before the end of this k-step recovery period,
the shield would enter the fail-safe state and stop minimizing the deviation. In
other words, the shield may generate O′ arbitrarily to satisfy ϕs(I,O′) while
ignoring the actual value of O. This often is not the desired behavior, e.g., when
the shield enforces mutual-exclusion of a bus arbiter by hard-wiring all output
signals to decline all requests.

Our new method, in contrast, can robustly handle burst error. Whenever
the design D satisfies the specification ϕs, our shield ensures that O′ = O (no
deviation). Whenever D violates ϕs, our shield takes the best recovery strategy
among the set of all possible ones and, unlike the method by Bloem et al. [3],
it never enters the fail-safe state. In order words, our method guarantees that
the shield S keeps minimizing the deviation between O to O′ even under burst
error. We have implemented our new method in a software tool and evaluated it
on a range of safety specifications. The experimental results show that the shield
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Fig. 4. Our new shield for burst error.

synthesized by our method can robustly handle burst error, whereas the shield
synthesized by Bloem et al. [3] cannot.

To summarize, this paper makes the following contributions: (1) We propose
a new method for synthesizing a runtime enforcer from a set of safety properties
that can robustly handle burst error. (2) We implement the method in a software
tool and evaluate it on a large set of benchmarks to demonstrate its effectiveness.

The remainder of this paper is organized as follows. First, we illustrate the
main ideas of our new method using a motivating example in Sect. 2. Then, we
establish the notation in Sect. 3 and present our method in Sect. 4. We develop
a technique for improving the performance of our synthesis algorithm in Sect. 5.
We describe our experimental results in Sect. 6. We review the related work in
Sect. 7 and then give our conclusions in Sect. 8.

2 Motivation

In this section, we use an example to illustrate the main advantage of our shield
synthesis method, which is the capability of handling burst error. Consider the
automaton representation of a safety specification in Fig. 2, which has three
states, one Boolean input signal, and two Boolean output signals. Here, the
state 0 is the initial state and the state 2 is the unsafe state. Every edge in
the figure represents a state transition. The edge label represents the values
of the input and output signals, where the digit before the comma is for the
input signal and the two digits after the comma are for the output signals. X
stands for don’t care, meaning that the digit can be either true (1) or false (0).
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Among other things, the safety specification in Fig. 2 states that when the input
value is 0, the two output values cannot be 11; furthermore, in state 1, the two
output values cannot be 00.

Assume that the design D(i, o1o2) occasionally violates the safety specifica-
tion, e.g., by generating 11 for the output signals o1o2 when the input i is 0,
which forces the automaton to enter the unsafe state. We would like to have the
shield S(i, o1o2, o′

1o
′
2) to produce correct values for the modified output o′

1o
′
2 as

either 10, 01, or 00. Furthermore, whenever the design satisfies the specification
or recovers from transient errors, we would like to have the shield produce the
same (correct) output as the design; that is, o′

1 = o1 and o′
2 = o2.

Unfortunately, the shield synthesized by Bloem et al. [3] can not always
accomplish this task. Indeed, if given the safety specification in Fig. 2 as input,
their method would report that a 1-stabilizing shield, which is capable of recov-
ering from a violation in one clock cycle, does not exist, and the best shield their
method can synthesize is a 2-stabilizing shield, shown in Fig. 3 (to make it sim-
ple, we omit part of the shield unrelated to handling burst error), which requires
up to 2 clock cycles to fully recover from a property violation. For example,
starting from the initial state S0, if the shield sees i, o1o2 = 0, 01, which satisfies
ϕs, it will produce o′

1o
′
2 = 01 and go to the state S1. From S1, if the shield sees

i, o1o2 = 0, 11, which violates ϕs, it will produce o′
1o

′
2 = 01 and go to the state

S3. At this moment, if the second violation i, o1o2 = 0, 11 occurs, the shield will
enter a fail-safe state Sf , where it stops minimizing the deviation between o′

1o
′
2

and o1o2.

Step 0 1 2 3 4 5 6 7 8 9
Input i 0 0 1 0 0 0 0 0 0 ...
Output o1o2 00 01 10 11 11 10 10 00 00 ...
Shield output o1o2 00 01 10 01 01 01 01 01 01 ...
State in Fig. 3 S0 S0 S1 S1 S3 Sf Sf Sf Sf ...

Fig. 5. Simulation trace of 2-stabilizing
shield.

Step 0 1 2 3 4 5 6 7 8 9
Input i 0 0 1 0 0 0 0 0 0 ...
Design Output o1o2 00 01 10 11 11 10 10 00 00 ...
Shield output o1o2 00 01 10 01 01 10 10 00 00 ...
State in Fig. 4 S0 S0 S1 S1 S3 S3 S0 S0 S0 ...

Fig. 6. Simulation trace of our new
shield.

Figure 5 shows the simulation trace where two consecutive errors occur in
Steps 3 and 4, forcing the shield to enter the fail-safe state sf where it no longer
responds to the original output o1o2. This is shown in Steps 5–8, where the
original output no longer violates ϕs and yet the shield still modifies the values
to 01.

In contrast, our new method would synthesize the shield shown in Fig. 4,
which never enters any fail-safe state but instead keeps minimizing the deviation
between o′

1o
′
2 and o1o2 even in the presence of burst error. As shown in the simu-

lation trace in Fig. 6, when the two consecutive violations occur in Steps 3 and 4,
our new shield will correct the output values to 01. Furthermore, immediately
after the design recovers from the transient errors, the shield stops modifying the
original output values. Therefore, in Steps 5–8, our shield maintains o′

1o
′
2 = o1o2.
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3 Preliminaries

In this section, we establish the notation used in the remainder of this paper.

The Reactive System. The reactive system to be protected by the shield is
represented as a Mealy machine D = 〈S, s0, ΣI , ΣO, δ, λ〉, where S is a finite set
of states, s0 ∈ S is the initial state, ΣI is the set of values of the input signals,
ΣO is the set of values of the output signals, δ is the transition function, and λ
is the output function. More specifically, δ(s, σI) returns the unique next state
s′ ∈ S for a given state s ∈ S and a given input value σI ∈ ΣI , while λ(s, σI)
returns the unique output value σO ∈ ΣO.

The safety specification that we want to enforce is represented as a finite
automaton ϕs = 〈Q, q0, Σ, δϕ, Fϕ〉, where Q is a finite set of states, q0 ∈ Q is the
initial state, Σ = ΣI × ΣO is the input alphabet, δϕ is the transition function,
and Fϕ ⊆ Q is a set of unsafe (error) states. Let σ = σ0σ1 . . . be an input trace
where for all i = 0, 1, . . . we have σi ∈ Σ. Let q = q0q1 . . . be the corresponding
state sequence such that, for all i = 0, 1, . . ., we have qi+1 = δϕ(qi, σi).

We assume the input trace σ of ϕs is generated by the reactive system D.
We say that σ satisfies ϕs if and only if the corresponding state sequence q visits
only the safe states; that is, for all i = 0, 1, . . . we have qi ∈ (Q \ Fϕ). We say
that D satisfies ϕs if and only if all input traces generated by D satisfy ϕs. Let
L(ϕs) be the set of all input traces satisfying ϕs. Let L(D) be the set of all input
traces generated by D. Then, D satisfies ϕs if and only if L(D) ⊆ L(ϕs).

The Safety Shield. Following Bloem et al. [3], we define the shield as another
reactive system S such that, even if D violates ϕs, the combined system (D ◦ S)
still satisfies ϕs. We define the synchronous composition of D and S as follows:

Let the shield be S = 〈S′, s′
0, Σ,ΣO′ , δ′, λ′〉, where S′ is a finite set of states,

s′
0 ∈ S′ is the initial state, Σ = ΣI × ΣO is the input alphabet, ΣO′ , which is

the set of values of O′, is the output alphabet, δ′ : S′ × Σ → S′ is the transition
function, and λ′ : S′ × Σ → ΣO′ is the output function.

The composition is D ◦ S = 〈S′′, s′′
0 , ΣI , ΣO′ , δ′′, λ′′〉, where S′′ = (S × S′),

s′′
0 = (s0, s′

0), ΣI is the set of values of the input of D, ΣO′ is the set of values
of the output of S, δ′′ is the transition function, and λ′′ is the output function.
Specifically, λ′′((s, s′), σI) is defined as λ′(s′, σI · λ(s, σI)), which first applies
λ(s, σI) to compute the output of D and then uses σI ·λ(s, σI) as the new input
to compute the final output of S. Similarly, δ′′ is a combined application of δ and
λ from D and δ′ from S. That is, δ′′((s, s′), σI) = (δ(s, σI), δ′(s′, σI · λ(s, σI))).

Let L(D ◦ S) be the set of input traces generated by the composed system.
Clearly, if L(D) ⊆ L(ϕs), the shield S should simply maintain σO

′ = σO. But if
L(D) �⊆ L(ϕs), the shield S needs to modify the original output of D to eliminate
the erroneous behaviors in L(D) \ L(ϕs).

In general, there are multiple ways for S to change the original output σO ∈
ΣO into σO

′ ∈ ΣO′ to eliminate the erroneous behaviors, some of which are
better than others in minimizing the deviation. Ideally, we would like the shield
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to do nothing when D satisfies ϕs; that is, σO
′ = σO. However, when D violates

ϕs, the deviation is inevitable. Although the shield synthesis method by Bloem
et al. [3] guarantees minimum deviation if no more than one error occurs in each
k-step recovery period, under burst error, the shield would enter a fail-safe mode
where it stops minimizing the deviation. This is undesirable because, even after
the transient errors disappear, their shield would still keep modifying the output
values.

4 The Synthesis Algorithm

In this section, we present our new shield synthesis algorithm for handling burst
error.

4.1 The Overall Flow

Algorithm 1 shows the overall flow of our synthesis procedure. The input of the
procedure consists of the safety specification ϕs(I,O), and the set of signals in
I, O, and O′. The output of the procedure is the safety shield S(I,O,O′).

Algorithm 1. Synthesizing the shield S(I,O,O′) from the safety specifi-
cation ϕs(I,O).

1: Synthesize (specification ϕs, input I, output O, modified output O′) {
2: Q(I, O′) ← genCorrectnessMonitor(ϕs)
3: E(I, O, O′) ← genErrorAvoidingMonitor(ϕs)
4: G ← Q ◦ E // create the safety game
5: ρ ← computeWinningStragety(G)
6: S(I, O, O′) ← constructShield(ρ)
7: return S
8: }

Starting from the safety specification ϕs, our synthesis procedure first con-
structs a correctness monitor Q(I,O′). The correctness monitor Q ensures that
the composed system, whose input is I and output is O′, always satisfies the
safety specification. That is, ϕs(I,O′) holds even if ϕs(I,O) occasionally fails.
Note that Q(I,O′) alone may not be sufficient as a specification for synthesizing
the desired shield S, because it refers only to O′ but not to O. For example, if
we give Q to a classic reactive synthesis procedure, e.g., Pnueli and Rosner [14],
it may produce a shield that ignores the original output O of the design and
arbitrarily generates O′ to satisfy ϕs(I,O′).

To minimize the deviation from O to O′, we construct an error-avoiding mon-
itor E(I,O,O′) from ϕs. In this work, we use the Hamming distance between O
and O′ as the measurement of the deviation. Therefore, when the design D(I,O)
satisfies ϕs(I,O), the error-avoiding monitor ensures that O′ = O. When D(I,O)
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violates ϕs(I,O), however, we have to modify the output to avoid the violation of
ϕs(I,O′); in such cases, we want to impose constraints in E so as to minimize the
deviation from O to O′. The detailed algorithm for constructing E is presented
in Sect. 4.2. Essentially, E(I,O,O′) captures all possible ways of modifying O to
O′ to minimize the deviation. To pick the best possible modification strategy, we
formulate the synthesis problem as a two-player safety game, where the shield
corresponds to a winning strategy. Toward this end, we define a set of unsafe
states of E as follows: they are the states where ϕs(I,O) holds but O′ �= O, and
they must be avoided by the shield while it modifies O to O′.

The two-player safety game is played in the game graph G = Q ◦ E , which is
a synchronous composition of the correctness monitor Q and the error-avoiding
monitor E . Recall that Q is used to make sure that ϕs(I,O′) holds, and E is
used to make sure that O′ = O whenever ϕs(I,O) holds. Therefore, the set of
unsafe states of G is defined as follows: they are the states that are unsafe in
either Q or E . Conversely, the safe states of G are those that simultaneously
guarantee ϕs(I,O′) and minimum deviation from O to O′. The main difference
between our new synthesis method and the method of Bloem et al. [3] is in the
construction of this safety game: their method does not allow the second error
to occur in O during the k-step recovery period of the first error, whereas our
new method allows such error.

After solving the two-player safety game denoted as G(I,O,O′), we obtain a
winning strategy ρ = (δρ, λρ), which allows us to stay in the safe states of G by
choosing proper values of O′ regardless of the values of I and O. The winning
strategy consists of two parts: δρ is the transition function that takes a present
state of G and values of I and O as input and returns a new state of G, and λρ

is the output function that takes a present state of G and values of I and O as
input and returns a new value for O′. Finally, we convert the winning strategy
ρ into the shield S, which is a reactive system that implements the transition
function and output function in ρ.

4.2 Constructing the Safety Game

We first use an example to illustrate the construction of the safety game G
from ϕs. Consider Fig. 7 (a), which shows the automaton representation of a
safety property of the ARM bus arbiter [2]; the LTL formula is G(¬R → X(¬S)),
meaning that transmission cannot be started (S is the output) if the bus is not
ready (R is the input signal). In Fig. 7 (a), the state 2 is unsafe. The first step of
our synthesis procedure is to construct the correctness monitor Q(R,S′), shown
in Fig. 7 (b), which is a duplication of ϕs(R,S) except for replacing the original
output S with the modified output S′.

The next step is to construct the error-avoiding monitor E(R,S, S′), which
captures all possible ways of modifying S into S′ to avoid reaching the unsafe
state. This is where our method differs from Bloem et al. [3] the most. Specifi-
cally, Bloem et al. [3] assume that the second violation from the design will not
occur during the k-step recovery period of the first violation. If there are more
than one violations within k steps, it would enter a fail-safe state Sf , where it
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Fig. 7. Example: (a) safety specification ϕs(R, S) and (b) correctness monitor Q(R, S′).

stops tracking the deviation from S to S′. Our method, in contrast, never enters
the fail-safe state. It starts from the safety specification ϕs and replaces all tran-
sitions to the unsafe state with transitions to some safe states. This is achieved
by modifying the value of the output signal S so that the transition matches
some existing transition to a safe state. If there are multiple ways of modifying
S to redirect the edges leading to unsafe states in ϕs, we simultaneously track
all of these choices until the ambiguity is completely resolved. In other words,
we keep correcting consecutive violations without ever giving up (entering Sf ).
This is done by modifying the error tracking automaton which is responsible
for motoring the behavior of design: we conservatively assume the design will
make mistakes at any time, so whenever there is a chance for the design to make
mistakes, we generate a new abstract state to guess its correct behaviors.

Construction of E(I, O,O′). Algorithm 2 shows the pseudocode for construct-
ing the error-avoiding monitor E . At the high level, E = U ◦ T , where U(I,O) is
called the violation monitor and T (O,O′) is called the deviation monitor.

– To construct the violation monitor U , we start with a copy of the specification
automaton ϕk, and then replace each existing edge to a failing state, denoted
as (s, l) → t, with an edge to a newly added abstract state sg, denoted as
(s, l) → sg. The abstract state sg represents the set of possible safe states
to which we may redirect the erroneous edge. That is, each safe state s′ ∈
sg.states may be reached from s through (s, l′) → t′, where l, l′ share common
input label. Since each guessing state sg represents a subset of the safe states in
ϕs, the procedure for constructing U(I,O) from ϕs(I,O) resembles the classic
procedure for subset construction.

– To construct the deviation monitor T , we start by creating two states A and B
and treating values of O and O′ as the input symbols. Whenever O = O′, the
state transition goes to state A, and whenever O �= O′, the state transition
goes to B. Finally, we label A as the safe state and B as the unsafe state.
Figure 10 shows the deviation monitor.

Consider the safety specification ϕs(R,S) in Fig. 7 (a) again. To construct
the violation monitor U(R,S), we first make a copy of the automaton ϕs, as
shown in Line 2 of Algorithm 2. Then, starting from Line 3, we replace the edge
to the unsafe state 2, denoted as (1, S) → 2, with the edge to a guessing state,
denoted as (1, S) → 2g, where the set of safe states in 2g is {0, 1}. That is, if we
modify the output value S to the new value ¬S, the transition from state 1 may
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Algorithm 2. Generating error-avoiding monitor E from safety specifica-
tion ϕs.

1: genErrorAvoidingMonitor ( specification ϕs ) {
2: U ← copy of the specification automaton ϕs

3: while (∃ edge (s, l) → t in U where t is an unsafe state) {
4: Delete edge (s, l) → t from U
5: Add abstract state sg and edge (s, l) → sg into U //{t′} ⊆ sg.states

6: foreach (edge (s, l′) → t′ such that t′ is safe, and l, l′ share common input)

7: foreach (outgoing edge (t′, l′′) → t′′)
8: Add edge (sg, l′′) → t′′ into U
9: U ← mergeEdgesWithSameLabel(U)

10: }
11: T ← the deviation monitor

12: E ← U ◦ T
13: return E
14: }
15: mergeEdgesWithSameLabel(monitor U) {
16: while (∃ edges (sg, l1) → t1 and (sg, l2) → t2 in U where l1 ∧ l2 is not false) {
17: Delete edges (sg, l1) → t1 and (sg, l2) → t2 from U
18: if (l1 ∧ ¬l2 is not false) Add edge (sg, l1 ∧ ¬l2) → t1 back to U
19: if (l2 ∧ ¬l1 is not false) Add edge (sg, l2 ∧ ¬l1) → t2 back to U
20: Add abstract state sm and edge (sg, l1 ∧ l2) → sm to U //{t1, t2} ⊆ sm.states

21: foreach (outgoing edge of t1 and t2, denoted as (t12, l′) → t′)
22: Add edge (sm, l′) → t′ into U
23: if (t1 or t2 is unsafe) return U
24: }
25: }

go to either state 0 or state 1. This is shown in Fig. 8 (a). In Lines 6–8, for each
outgoing edge of the states in {0, 1}, we add an outgoing edge from 2g.

Next, we merge the outgoing edges with the same label in Line 9. This acts
like a subset construction. For example we may first merge two edges with the
label R∧¬S, both of them lead to state 0. Then, we merge the two edges with the
label ¬R∧¬S. Then, consider the edge label ¬R∧S: starting from state 0 ∈ 2g,
the next state is 1, and starting from state 1 ∈ 2g, the next state is 2. Therefore,
the outgoing edge labeled ¬R ∧ S goes to the abstract state 4m, whose set of
states is {1, 2}. Since 2 is an unsafe state, we return back to Line 3 in Algorithm 2
and replace it with other guessing states. More specifically, the state 2 is replaced
with the state 1 and 4m becomes 4g. After adding all outgoing edges of 4g, the
resulting U is shown in Fig. 8 (a). Similarly, we merge the remaining outgoing
edges of 2g that are labeled R ∧ S and create the abstract state 3m, whose set
of states is {0, 2}. Since 2 is an unsafe state, we go back to Line 3 and replace it
again. This turns 3m into 3g and the resulting automaton is shown in Fig. 8 (b).
At this moment, all error states (state 2) are eliminated and therefore U is fully
constructed.

Unsafe States of E = U ◦ T . The error-avoiding monitor E is a synchronous
composition of U and T , where the unsafe states are defined as the union of the
following sets:
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Fig. 8. Constructing the violation monitor U(R, S): Replacing edge 1 → 2 with 1 →
{0, 1}.

– {(s,B) | s is a safe state in U coming from ϕs},
– {(sm, B) | sm results from merging edges and it contains no unsafe state}, and
– {(sg, A) | sg results from replacing some unsafe states}.

The reason is, when s is a safe state and sm contains only safe states, the
specification ϕs is not violated and therefore we must ensure O′ = O (state
A in T ). In contrast, since sg is created by replacing some originally unsafe
states, the specification ϕs(I,O) is violated, in which case O′ �= O in order to
avoid the violation of ϕs(I,O′). Figures 9, 10 and 11 show the resulting error-
avoiding automaton. For brevity, only safe states and edges among these states
are shown in Fig. 11. Note that 2gB, 3gB, 4gB are there because they are created
by replacing some unsafe states and O′ �= O holds in the B states.

Figure 12 shows the game graph G = Q ◦ E for the correctness monitor Q
in Fig. 7 (b) and the error-avoiding monitor E in Fig. 11. For brevity, only the
safe states in G and edges among these states are shown in Fig. 12. A safe state
in G is a state (gQ, gE) where gQ is safe in Q and gE is safe in E . The winning
strategy of this safety game is denoted as ρ = (δρ, λρ), where δρ is the transition
function capturing a subset of the edges in Fig. 12, and λρ is the output function
determining the value of S′ based on the current state and values of R and S.
The shield S(R,S, S′) is a reactive system that implements function δρ and λρ

of ρ.

5 Solving the Safety Game

We compute the winning strategy ρ = (δρ, λρ) by solving the two-player safety
game G = (G, g0, Σ,ΣO′ , δ, F ), where G is a finite set of game states, g0 ∈ G
is the initial state, F ⊆ G are the final (unsafe) states, δ : G × Σ × ΣO′ → G
is a complete transition function. The two players of the game are the shield
and the environment (including the design D). In every game state g ∈ G, the
environment first chooses an input letter σ ∈ Σ, and then the shield chooses
some output letter σO

′ ∈ ΣO′ , leading to the next state g′ = δ(g, σ, σO
′).
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Fig. 9. Violation monitor U(R, S).

Fig. 10. Deviation monitor T (S, S′). Fig. 11. Error-avoiding monitor E(R, S, S′).

The sequence g = g0g1 . . . of game states is called a play. We say that a play is
won by the shield if and only if, for all i = 0, 1, . . . we have gi ∈ G \ F .

5.1 Fix-Point Computation

In this work, we use the algorithm of Mazala [12] to solve the safety game. In
this algorithm, we compute “attractors” for a subset of safe states (G \ F ) and
final states (F ), until reaching the fix-point. Specifically, we maintain two sets
of states: F and the winning region W. F is the set of states from which the
shield will inevitably lose, while W is the set of states from which the shield has
a strategy to win. We also define a function

MX(Z) = {q | ∃σ ∈ Σ . ∀σO
′ ∈ ΣO′ . q′ = δ(q, σ, σO

′) ∧ (q′ ∈ Z)}

That is, MX(Z) is the set of states from which the environment can force the
transition to a state in Z regardless of how the shield responds.

The fix-point computation starts with W = G \ F and F = F . In each
iteration, W = W \ MX(F) and F = F ∪ MX(F). The computation stops
when both W and F reach the fix-point.

5.2 Optimization

The computation of the winning strategy ρ in the safety game G = E ◦ Q is
time-consuming. In this section, we propose a new method for speeding up this
computation. First, we note that a safe state in G must be safe in both E and Q,
meaning that a winning play in G must be winning in both of the subgames
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Fig. 12. The game graph G(R, S, S′), which is the composition of Q(R, S′) and
E(R, S, S′).

E and Q. Therefore, instead of directly computing the winning region W of G,
which can be expensive due to the size of G, we first compute the winning region
W1 of the smaller subgame G1 = E , then compute the winning region W2 of the
smaller subgame G2 = Q, and finally compute the winning region W of the game
G by using W1 × W2 as the starting point. Since a winning play in G is winning
in both G1 and G2, we know W ⊆ W1 × W2.

Furthermore, due to the unique characteristics of the subgames G1 = E and
G2 = Q, in practice, W1 × W2 is often close to the final fix-point W. This is
because both E(I,O,O′) and Q(I,O′) are derived from the specification automa-
ton ϕs. Specifically, each state in Q is simply a copy of the corresponding state
in ϕs, whereas each state in E is either a copy of a safe state s in ϕs, or a
new abstract state sg that replaces some unsafe states in ϕs, or a new abstract
state sm consisting of only safe states in ϕs. Since it is cheaper to compute W1

and W2, this optimization can significantly speed up the fix-point computation.
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6 Experiments

We have implemented our new method in the same software tool that also imple-
ments the method of Bloem et al. [3]. The fix-point computation for solving
safety games is implemented symbolically, using CUDD [19] as the BDD library,
whereas the construction of the various monitors and the game graph are carried
out explicitly. The tool takes the automaton representation of the safety speci-
fication ϕs as input and returns the Verilog program of the synthesized shield S
as output.

We have evaluated our method on a range of safety specifications, including
temporal logic properties from (1) the Toyota powertrain control verification
benchmark [9], (2) an automotive design for engine and brake controls [13], (3)
the traffic light controller example from the VIS model checker [4], (4) LTL
property specification patterns from Dwyer et al. [6], and (5) parts of the ARM
AMBA bus arbiter specification [2]. Specifically, properties from [9] are on the
model of a fuel control system, specifying the performance requirements in vari-
ous operation modes. Originally, they were represented in signal temporal logic
(STL). We translated them to LTL by replacing the predicates over real vari-
ables with boolean variables. The properties for engine and brake control [13] are
related to the safety of the brake overriding mechanism. The properties for traffic
light controller [4] are for safety of a crossroads traffic light. The AMBA bench-
mark [2] includes combinations of various properties of an ARM bus arbiter.
We also translate liveness properties in Dwyer et al. [6] to safety properties by
adding a bound on the reaction time steps. For example, in the first columns
of Table 1, the numbers besides F and U are the bound number, where F and U
mean Finally and Until respectively. Details of these benchmarks can be found
in the supplementary document on our tool repository website [20].

Table 1 shows the results of running our tool on these benchmarks and com-
paring it with the method of Bloem et al. [3]. Columns 1–2 show the benchmark
name and the number of states of the safety specification ϕs. Columns 3–5 show
the results of applying the k-stabilizing shield synthesis algorithm [3], including
whether the resulting shield can handle burst error, the shield size in terms of the
number of states, and the synthesis time in seconds. Similarly, Columns 6–8 show
the results of applying our new synthesis algorithm. Note that the k-stabilizing
shields do not guarantee to handle burst error, and as shown in Table 1, only
some of them can actually handle burst error. Here, “no (1-step)” means the
shield needs at least one more clock cycle to recover from the previous error
before it can take on the next error, and “no (2-step)” means the shield needs at
least two more clock cycles to recover. In contrast, the shield synthesized by our
new method can recover instantaneously and therefore can always handle burst
error.

In terms of the synthesis time, the result is mixed in that our new method
is sometimes slower and sometimes faster than the existing method. There are
two reasons for such results. On the one hand, our method is searching through
a significantly larger game graph than the existing method in order to find the
best winning strategy for handling burst error. On the other hand, our method
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Table 1. Experimental results for comparing the two shield synthesis algorithms.

Property ϕs Sates K-Stabilizing Shield [3] Burst-Error Shield (New)

Handle-Burst- States Time (s) Handle-Burst- States Time (s)

Error in S Error in S
Toyota powertrain [9] 23 yes 38 0.2 yes 38 0.3

Engine and brake ctrl [13] 5 yes 7 0.1 yes 7 0.1

Traffic light [4] 4 yes 7 0.1 yes 7 0.2

F64p [6] 67 yes 67 0.7 yes 67 0.5

F256p 259 yes 259 46.9 yes 259 10.5

F512p 515 yes 515 509.1 yes 515 54.4

G(¬q) ∨ F64(q ∧ F64p) [6] 67 yes 67 0.7 yes 67 0.6

G(¬q) ∨ F256(q ∧ F256p) 259 yes 259 46.9 yes 259 10.7

G(¬q) ∨ F512(q ∧ F512p) 515 yes 515 517.7 yes 515 54.5

G(q ∧ ¬r → (¬r U4 (p ∧ ¬r))) [6] 6 yes 15 0.1 yes 145 0.1

G(q ∧ ¬r → (¬r U8 (p ∧ ¬r))) 10 yes 109 0.2 yes 5,519 4.5

G(q ∧ ¬r → (¬r U12 (p ∧ ¬r))) 14 yes 753 6.3 yes 27,338 1,414.5

AMBA G1+2+3 [2] 12 yes 22 0.1 yes 22 0.1

AMBA G1+2+4 [2] 8 no (1-step) 61 6.3 yes 78 2.2

AMBA G1+3+4 [2] 15 no (1-step) 231 55.6 yes 640 97.6

AMBA G1+2+3+5 [2] 18 no (1-step) 370 191.8 yes 1,405 61.8

AMBA G1+2+4+5 [2] 12 no (1-step) 101 3,992.9 yes 253 472.9

AMBA G4+5+6 [2] 26 no (2-step) 252 117.9 yes 205 26.4

AMBA G5+6+10 [2] 31 no (2-step) 329 9.8 yes 396 31.4

AMBA G5+6+9e4+10 [2] 50 no (2-step) 455 17.6 yes 804 42.1

AMBA G5+6+9e8+10 [2] 68 no (2-step) 739 34.9 yes 1,349 86.8

AMBA G5+6+9e16+10 [2] 104 no (2-step) 1,293 74.7 yes 2,420 189.7

AMBA G5+6+9e64+10 [2] 320 no (2-step) 4,648 1,080.8 yes 9,174 2,182.5

AMBA G8+9e4+10 [2] 48 no (2-step) 204 7.0 yes 254 6.1

AMBA G8+9e8+10 [2] 84 no (2-step) 422 22.5 yes 685 33.7

AMBA G8+9e16+10 [2] 156 no (2-step) 830 83.7 yes 1,736 103.1

AMBA G8+9e64+10 [2] 588 no (2-step) 3,278 2,274.2 yes 7,859 2,271.5

utilizes the new optimization technique described in Sect. 5.2 for symbolically
computing the winning region, which can significantly speed up the fix-point
computation.

Table 2 shows the results of our synthesis algorithm with and without opti-
mization. Columns 1–2 show the benchmark name and the size of the safety
specification. Columns 3–4 show the size of the resulting shield and the syn-
thesis time without using the optimization. Columns 5–6 show the shield size
and the synthesis time with the optimization. In almost all cases, there is sig-
nificant reduction in the synthesis time when the optimization is used. At the
same time, there is slightly difference in the number of states in the resulting
shield. This is because the game graph often contains multiple winning strate-
gies, and currently our method for computing the winning strategy tends to pick
an arbitrary one. Furthermore, since the shield is implemented in hardware, the
difference in the number of bit-registers (flip-flops) needed to implement the two
shields will be further reduced. For example, in the last benchmark, we have

log2(3278)� = 12, whereas 
log2(7859)� = 13, meaning that the shield requires
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Table 2. Experimental results for synthesizing the shield with and without
optimization.

Property ϕs States Burst Error Shield Burst Error Shield

Syn. (w/o Opt) Syn. (w/ Opt)

States in S Time (s) States in S Time (s)

Toyota powertrain [9] 23 38 0.3 38 0.3

Engine and brake ctrl [13] 5 7 0.1 7 0.1

Traffic light [4] 4 7 0.2 7 0.2

F64p [6] 67 67 0.7 67 0.5

F256p 259 259 45.5 259 10.5

F512p 515 5157 511.0 515 54.4

G(¬q) ∨ F64(q ∧ F64p) [6] 67 67 0.8 67 0.6

G(¬q) ∨ F256(q ∧ F256p) 259 259 46.2 259 10.7

G(¬q) ∨ F512(q ∧ F512p) 515 515 668.1 515 54.5

G(q ∧ ¬r → (¬r U4 (p ∧ ¬r))) [6] 6 98 0.1 145 0.1

G(q ∧ ¬r → (¬r U8 (p ∧ ¬r))) 10 4,002 3.9 5,519 4.5

G(q ∧ ¬r → (¬r U12 (p ∧ ¬r))) 14 95,357 1,506.9 27,338 1,414.5

AMBA G1+2+3 [2] 12 22 0.1 22 0.1

AMBA G1+2+4 [2] 8 69 2.3 78 2.2

AMBA G1+3+4 [2] 15 566 99.5 640 97.6

AMBA G1+2+3+5 [2] 18 1,256 58.4 1,405 61.8

AMBA G1+2+4+5 [2] 12 193 479.2 253 472.9

AMBA G4+5+6 [2] 26 206 26.3 205 26.4

AMBA G5+6+10 [2] 31 413 30.5 396 31.4

AMBA G5+6+9e4+10 [2] 50 796 40.4 804 42.1

AMBA G5+6+9e8+10 [2] 68 1,287 80.8 1,349 86.8

AMBA G5+6+9e16+10 [2] 104 2,334 194.2 2,420 189.7

AMBA G5+6+9e64+10 [2] 320 8,618 2,865.6 9,174 2,182.5

AMBA G8+9e4+10 [2] 48 233 5.6 254 6.13

AMBA G8+9e8+10 [2] 84 601 30.5 685 33.7

AMBA G8+9e16+10 [2] 156 1,344 111.0 1,736 103.1

AMBA G8+9e64+10 [2] 588 5,848 7,843 7,859 2,271.5

either 12 or 13 bit-registers. Nevertheless, for future work, we plan to investigate
new ways of computing the winning strategy to further reduce the shield size.

7 Related Work

As we have already mentioned, our method for ensuring that the design D always
satisfies the safety specification ϕs differs from both model checking [5,15], which
checks whether D |= ϕs but does not enforce ϕs, and conventional reactive
synthesis techniques [2,7,14,18], which synthesizes the design D from a complete
specification. Since our method is agnostic to the size and complexity of D, it can
be significantly more scalable than reactive synthesis in practice. Our method
differs from the existing shield synthesis method of Bloem et al. [3] in that it
can robustly handle burst error.

Our shield is a reactive system that can respond to a safety violation instanta-
neously, e.g., in the same clock cycle where the violation occurs, and therefore dif-
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fers from the many existing methods for enforcing temporal properties [8,10,17]
that have to buffer the erroneous output before correcting them. Similarly, it
differs from the methods [11,22] for enforcing temporal properties in concurrent
software, which relies on delaying the execution of one or more threads to avoid
unsafe states. It also differs from the method by Yu et al. [21], which aims at
minimizing the edit-distance between two strings, but requires the entire input
string to be available prior to generating the output string.

Renard et al. [16] proposed a runtime enforcement method for timed-
automaton properties, but the method differs from ours as it assumes that the
controllable input events can be delayed or suppressed, whereas our method
relaxes such an assumption. Bauer et al. [1] and Falcone et al. [8] also studied
what type of temporal logic properties can or cannot be monitored and enforced
at run time. These works are orthogonal and complementary to ours. In this
work, we focus on enforcing safety specification only. We leave the enforcement
of liveness properties for future work.

8 Conclusions

We have presented a new method for synthesizing a runtime enforcer to ensure
that a small set of safety-critical properties always hold in a reactive system.
The shield responds to property violations instantaneously and robustly handles
burst error. We have also presented an optimization technique for speeding up
the symbolic fix-point computation for solving the underlying safety games. We
have implemented our method in a software tool and evaluated it on a set of
benchmarks. Our experimental results show that the new method is significantly
more effective than existing methods for handling burst error.
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