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Abstract. Fault sensitivity analysis (FSA) is a side-channel attack
method that injects faults to cryptographic circuits through clock glitch-
ing and applies statistical analysis to deduce sensitive data such as the
cryptographic key. It exploits the correlation between the circuit’s sig-
nal path delays and sensitive data. A countermeasure, in this case, is
an alternative implementation of the circuit where signal path delays
are made independent of the sensitive data. However, manually devel-
oping such countermeasure is tedious and error prone. In this paper, we
propose a method for synthesizing the countermeasure automatically to
defend against FSA attacks. Our method uses a syntax-guided inductive
synthesis procedure combined with a light-weight static analysis. Given
a circuit and a set of sensitive signals as input, it returns a functionally-
equivalent and FSA-resistant circuit as output, where all path delays
are made independent of the sensitive signals. We have implemented our
method and evaluated it on a set of cryptographic circuits. Our experi-
ments show that the method is both scalable and effective in eliminating
FSA vulnerabilities.

1 Introduction

The rising security risks in embedded computing devices in cyber physical sys-
tems (CPS) and the Internet of Things (IoT) have led to the pervasive use
of cryptographic modules, often implemented in hardware, to guarantee secure
authentication, privacy, and integrity [3]. In particular, various light-weight cryp-
tographic primitives have been recommended for securing resource-constrained
devices such as Smartcards and RFID tags [10,27]. Although these cryptographic
algorithms are designed to be secure against brute-force attacks, their actual
implementations may not be as secure. Indeed, there have been many reported
cases of attacks on cryptographic modules in embedded systems, the majority
of which were through side-channel attacks [5,33,36].

Fault sensitivity analysis (FSA) is a side-channel attack [20,32,37] that
exploits the correlation between secret data and the time needed to propagate
these data through a cryptographic circuit. In particular, there is a large number
of reported cases of such attacks on lightweight block ciphers [4,21,23,24,29, 30,
38,39,42]. With physical access to the circuit, an attacker can introduce clock

© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part II, LNCS 9780, pp. 343-363, 2016.
DOI: 10.1007/978-3-319-41540-6_19



344 H. Eldib et al.

glitches until logical errors occur in the output. The attacker measures the fault
intensity critical level [24], which is the lowest fault intensity level where a faulty
output first occurs. This critical level can be compared, via a statistical analy-
sis [9], with a set of simulated critical levels computed a priori, to determine the
most likely values of the secret signals [41].

A countermeasure is an alternative implementation of the circuit where all
signal path delays are made independent of the sensitive data. However, man-
ually developing such countermeasure is tedious and error prone. Therefore, we
propose a new method for constructing the countermeasure automatically. Given
a circuit C' and a set S of sensitive signals as input, our method relies on inductive
synthesis [2,25,40] to compute a functionally equivalent circuit that is guaran-
teed to be resistant to FSA attacks. More specifically, it first generates a candi-
date circuit C’ that, at least for some input values, produces the same output as
C, and is likely to have balanced delay along the sensitive paths. Then, it invokes
a verification subroutine to check that ¢’ and C are functionally equivalent for
all input values and C’ is FSA-resistant. If C’ passes this verification step, then
a countermeasure has been synthesized. Otherwise, we block this bad counter-
measure and generate another candidate circuit. The iterative guess-and-check
procedure continues until a valid solution is found, or it runs out of time or
memory.

Although inductive synthesis has been successfully applied in main
domains [2,13,25,26,31,40], this is the first time that it is used to mitigate
fault attacks on cryptographic circuits. In practice, however, the bottleneck of
applying inductive synthesis to practical applications is the limited scalability of
the synthesis tool. Since the design space is enormous, directly applying induc-
tive synthesis to large circuits often does not work. Fortunately, in this applica-
tion, FSA-resistant circuits are amenable to compositional analysis. That is, the
delay of a path in a circuit is the summation of the delays of its individual path
segments. Based on this observation, we have developed a divide-and-conquer
approach, which first divides the circuit into pieces, then synthesizes a counter-
measure for each piece, and finally composes them to form the final solution.
In this context, our verification subroutine is implemented as an equivalence
checker for C' and C' augmented with a static analysis procedure for computing
the delays along their sensitive paths.

We have implemented our method and evaluated it on a set of realistic cryp-
tographic circuits, including a set of nonlinear components of AES and MAC-
Keccak. Our experimental results show that the new method is both scalable
and effective in eliminating FSA vulnerabilities. Furthermore, the resulting cir-
cuits are consistently smaller than the countermeasures obtained by competing
techniques. To summarize, this paper makes the following contributions:

— We propose the first fully automated method for synthesizing FSA-resistant
cryptographic circuits.

— We develop a new partitioned synthesis procedure to improve the scalability
of our method.
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— We demonstrate the effectiveness of our new method on realistic cryptographic
benchmarks.

The remainder of this paper is organized as follows. First, we illustrate our
main ideas using examples in Sect. 2. Then, we establish the notation in Sect. 3
and present our baseline inductive synthesis algorithm in Sect. 4. We present our
partitioned synthesis procedure in Sects.5 and 6 and our experimental results
in Sect. 7. We review related work in Sect.8 and finally give our conclusions in
Sect. 9.

2 DMotivation

In this section, we illustrate the main ideas behind our countermeasure synthesis
method using examples. Specifically, we use the PPRM1 AES S-box implementa-
tion proposed by Morioka and Satoh [34] as the original circuit, shown partially
in Fig.1. The standard Advanced Encryption Standard (AES) algorithm has
four main functions that are repeated for a number of rounds depending on the
required length of the secret key. Among the four functions, S-box is the only
nonlinear function. In cryptographic engineering, nonlinear functions are often
the hardest to implement and protect against side-channel attacks. In particular,
the S-box implementation scheme in Fig.1 is a widely used benchmark in the
cryptography field. The entire circuit is constructed from two parts: a network of
XOR gates and a network of AND gates. For simplicity, we only use the network
of AND gates to illustrate our synthesis algorithm. Later in this paper, we will
explain how our method can be applied to larger circuits, by first partitioning a
circuit into smaller regions, then synthesizing a countermeasure for each region,
and finally composing the partial solutions to form the countermeasure for the
whole circuit.

The circuit in Fig.1 is vul-
nerable to FSA attacks because
the time taken for computing
the output signals depends not
only on the structure of the cir-
cuit but also on the values of
the sensitive input signals (e.g.,
bits in the cryptographic key).
Consider the output signal Og of
the AND network and the two o
input signals Ins and Icpem. Let
7(Ichain) and 7(Inz2) be the sig-  Fig, 1. PPRM1 AES S-box that is vulnerable to
nal arrival times of I n4in and FSA.

Ino, respectively. If we assume

that all input signals Ino-In; have the same arrival time, we have 7(Icpqin) >
7(Ingy). Furthermore, the value of 7(I.pqen) depends on the value of the input
signals Ing, Iny, Ins, Ing, Ins, Ing as well as the number of gates along the path.
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If we assume that Ing is a sensitive signal, the aforementioned mismatch in the
arrival time of the input signals of the last AND gate will make signal O sensitive
as well.

In the context of FSA attacks, we say that the output O is statistically
dependent on the sensitive variable In, for the following reasons. When the
value of In, is logical 1, the delay 7(Oyp) is determined by 7(Icpain ). In contrast,
when the value of In, is logical 0, the delay 7(Og) is determined by 7(Ins). Since
T(Iehain) > T(In2), the dependency relation and the secret value of In, cause
a leak of the sensitive information, which is recoverable by correlation-based
statistical analysis techniques [32,37].

Previously published countermeasures for FSA, typically hand-crafted by
cryptographic system engineers [19,22], rely on adding buffers (delay components)
to certain input-output paths to eliminate such information leaks. For example,
a recently-published countermeasure in Fig. 2 was implemented by manually ana-
lyzing the input-output signal paths for each output gate, and then adding buffers
accordingly to make the delay along all sensitive paths equal. However, such coun-
termeasures often result in an unnecessarily large number of logic gates inserted
into the circuit, thus leading to higher area cost and energy cost.

Our method, in contrast, N N N N
can generate more efficient |,
countermeasures. Figure 3 illus- o
trates the circuit synthesized by
our method, which is function- ™
ally equivalent to the original ®
circuit and at the same time

Outd

Out1

guarantees to be FSA-resistant. "™ Outz
That is, the path delays are s OR ous
independent of the sensitive s Aray | ows
inputs. Furthermore, it is more " | ous
efficient than the prior solution m ous

in Fig. 2 in terms of area cost as
well as the latency of the circuit.

In fact, our new solution uses
Only 13 logic gates as OppOSCd to Fig. 2. S-box with buffered countermeasure [22}
the 41 gates used by the hand-

crafted circuit in Fig. 2, and the

21 gates used by the original circuit in Fig. 1.

It is worth pointing out that, currently, no EDA tool can be used to generate
FSA-resistant circuits such as the one shown in Fig. 3. For example, traditional
logic synthesis and optimization techniques, such as two- and multi-level mini-
mizations [28], do not have the capability of identifying sensitive signal paths or
ensuring that these paths exhibit the same delay. We will demonstrate this in
the experiments section and explain why it is difficult to leverage state-of-the-art
EDA algorithms, such as the ones implemented in the ABC tool [12], to generate
FSA-resistant circuits.

Out7
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Our new method leverages
the idea of syntax-guided induc-

tive synthesis to generate FSA =
countermeasures. Although in- e 7(::
ductive synthesis has been N

applied to many domains [2, ™ XOR —=
13,25,26,31,40], this is the first Array | ow
time it is used to eliminate FSA | ous
vulnerabilities in cryptographic " | ous
circuits. When inductive syn- 2 | ow

thesis techniques are applied to
large circuits, however, scalabil-
ity becomes a problem because
the synthesis procedure has to search an extremely large design space for an
alternative and FSA-resistant implementation of the given circuit. As mentioned
earlier, we propose to solve this scalability problem using a partitioned synthesis
procedure. After establishing the notion and present our baseline synthesis algo-
rithm in Sects. 3 and 4, we will explain how to leverage the divide-and-conquer
principle to scale our synthesis method to large circuits.

Fig. 3. S-box with our new countermeasure.

3 Preliminaries

Fault attacks are typically conducted by changing the physical environment of
the circuit to introduce logical errors. Although various fault injection techniques
have been used in practice, in this work, we focus on faults injected by disturb-
ing the external clock, and more specifically, by increasing the clock frequency
beyond its normal range.

Fault Sensitivity Analysis (FSA). In digital circuits, the time taken by the output
to change from logical 1 to logical 0 (or vice versa) in response to changes in the
inputs may depend on the circuit structure as well as values of the input/internal
signals. This is important to attackers, because it means the impact of an injected
fault will be significantly different depending on the internal states of the circuit.
Consider the AND gate in Fig. 4, where Ty and T are the arrival time of input
signals A and B, respectively, and T4np is the gate’s propagation delay. When
Ty < Tg, i.e., signal B arrives later than signal A, the time taken for signal C
to stabilize (T.) depends on the value of signal A. Specifically,

— when A is logical 0, we have T, = T4 + Tanp; and
— when A is logical 1, we have T, = Tg + Tanp-

In other words, by observing the difference in T, we can deduce the (sensitive)
value of A based on our knowledge of the circuit structure. Such dependency is
not unique to AND gates; other logic gates have similar properties. For a large
circuit, it is not uncommon for delays along input-to-output paths to depend
on the values of sensitive signals. However, to launch a successful attack, merely
injecting faults is not enough; these faults must become observable.
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In practice, the chance of producing a faulty output T A
depends on the intensity of the faults injected to the cir- )
cuit, for example, through over-clocking [20,23], as shown e
in Fig.5. Note that the information leak is specific to Tano
the faults as opposed to generic timing attacks. Without
fault injection, the tiny delay variation in the combina-
tional logic part of this sequential circuit (C(i,0)) would
not be visible to attackers. This is because the output signals (o) are always syn-
chronized by the flip-flops before they are propagated to the next clock cycle.
However, faults injected via clock glitching may destabilize the flip-flop based
synchronization scheme, causing the information leak.

k.
oko [T L L
I : 0 . okt T LLULILITLIL
i En F‘T

Clock

C=AAB

Fig. 4. Fault sensitiv-
ity of an AND gate.

Ck_0
Clk_1
En
Fig. 5. Injecting faults via clock glitching [20,23]: (a) the circuit and (b) the timing
diagram.

Following Ghalaty et al. [23], we define the fault intensity and fault sensi-
tivity of a circuit as follows. The fault intensity is the strength of the faults
by which a circuit is pushed outside of its normal operating condition. Since
faults are introduced through clock-glitching, the fault intensity corresponds to
the shortened clock cycle. The fault sensitivity is defined as the fault intensity
where the circuit starts to generate faulty output. In our work, the fault inten-
sity corresponds to the critical paths in the circuit. FSA, in particular, relies on
exploiting the dependency between the values of sensitive input signals and the
fault sensitivity critical level, or simply the critical level, under which injected
faults become observable in the circuit’s output.

Attacks and Countermeasures. We assume the attacker has knowledge of the
circuit under attack. In this case, an FSA attack often consists of three steps:

1. The attacker injects faults through clock-glitching and measures the critical
level of the circuit for a set of N randomly generated plaintexts (inputs);

2. The attacker computes, using computer simulation, the critical level for each
of the N selected plaintexts and combinations of the sensitive data values;

3. The attacker performs a correlation analysis between the measured critical
level and the simulated critical level for each combination of sensitive data
values.
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In the third step above, the sensitive data value combination that results in the
highest correlation coefficient will be identified and used to deduce the sensitive
data value.

Since the necessary condition for FSA attacks is having easily distinguish-
able fault sensitivity critical levels for various sensitive data value combinations,
the goal of a countermeasure is to disable this condition. Generally speaking,
among output signals whose arrival time depend on the sensitive data, the greater
the difference in their arrival times, the more distinguishable the critical levels,
and consequently, the higher the chance that attackers can successfully deduce
the sensitive data. Therefore, the ideal countermeasure is an alternative and
functionally-equivalent implementation of the original circuit that has the same
delay for all its sensitive input-output signal paths.

Previously published FSA countermeasures [19,22] mainly rely on adding
delay elements to certain parts of the circuit to make the arrival time of all
output signals independent of the sensitive data. However, this approach may
add an unnecessarily large number of delay elements (buffers), which results in
higher area cost and power cost (Fig.2). In contrast, our method can gener-
ate a potentially more efficient countermeasure (Fig.3) using the new inductive
synthesis technique.

4 Synthesis of FSA Countermeasures

Our method takes a circuit C' and a set S of sensitive signals as input and returns
an FSA-resistant circuit C” as output. It consists of a synthesis subroutine and
a verification subroutine, where the synthesis subroutine guesses a candidate
solution and the verification subroutine checks whether it is a valid solution.
In this work, the verification subroutine has to check two properties: (1) the
new circuit C” is functionally equivalent to C; and (2) the new circuit C’ is
FSA-resistant.

More formally, we say that two circuits C(i,0) and C'(i’, 0’) are functionally
equivalent if (i = ¢') — (0 =0'). Let w4 (¢4, 0f) and wg(i’z, o) be two sensitive
paths in C’, where /4,13 € S are the sensitive inputs and 4/, # 5. Let 7, ()
be the delay of the path 7 under the input valuation v — different input values
can lead to different delays of the same path. We say that C’ is FSA-resistant
if 7, (ma(iy,0p)) = 1,(mB(i5, 0f)) for any two such paths T4 and 7p and any
valuation v of the input signals.

To reduce the computational cost, we choose to formulate the synthesis sub-
problem in a way that every solution C” is guaranteed to be FSA-resistant. There-
fore, the verification subroutine only needs to check the functional equivalence
of C' and C’. The main idea behind our synthesis subroutine is to construct a
template circuit, whose instantiations are guaranteed to be FSA-resistant. With-
out loss of generality, we assume all logic gates have unit propagation delay, and
being FSA-resistant means that all paths from sensitive signals to the output
have an equal number of logic gates. Consider the example in Fig. 1 again, whose
template circuit is shown in Fig. 6. Gates and input/output signals in this dia-
gram are distributed to five different levels, where Level 0 consists of only output
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signals, Level 4 consists of only input signals, and in between the two levels are
the logic gates of various types. This is a template because neither the types of
internal logic gates nor the connections between the gates have been fixed.
To make sure all instan- Level 0
tiations of this template cir-
cuit are FSA-resistant, we
require that (1) all sensi- i ,
tive input nodes are placed Level 1 i 1 1
on the same level-although -
they do not have to be at
the bottom level-and (2) the ' ' '

output and input of each Level 2 4 ! !
node are constrained to be -
connected, respectively, to ; LA A A R

either a node of one level

higher or a node of one level Level 3 ! ‘ !

lower, to ensure that the "'
. . \l v \ A\l \ \

level assigned to this node

remains valid. Implicitly, the Level 4

A ) A
above constraints guarantee @ @ L @
an equal number of gates
between each output signal
and the corresponding sen- Fig. 6. FSA-resistant template circuit structure.

sitive inputs. Note that the
circuit only needs to have equal-delay paths for each output; it does not need to
have the same delay for all outputs.

To reduce the computational overhead within the SyGuS tools, we also sta-
tically estimate the level where the output signals should be placed in the tem-
plate circuit, based on the number of inputs they are connected to and the
level required for each input. Since this is only an estimation, initially we assign
the minimal depth needed to separate an output node from the sensitive input
nodes to fit all nodes in between. If the depth turns out to be insufficient, the
synthesis subroutine would fail to return a solution, in which case we shift the
output nodes one level up to enlarge the design space, and invoke the synthesis
subroutine again.

In principle, this synthesis subproblem can be specified using the SyGuS
specification language and solved using the associated tools developed by Alur
et al. [2] (or the Sketch tool by Solar-Lezama [40]). In practice, however, there
are two significant challenges. The first challenge is due to a limitation in the
implementation of SyGuS tools. Specifically, they are designed for synthesizing
a function with a single output, whereas we need to synthesize a circuit with
multiple output signals, and these output signals must share logic gates that fall
in their cone-of-influence as much as possible. Although SyGus allows the use of
multiple functions (each with a single output) to mimic a circuit with multiple
output signals, in such case, the SyGuS tools would not return a solution where
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the internal nodes are shared among these functions. Therefore, we need to
modify the SyGuS tools, so that internal nodes can be shared among multiple
functions.

Figure 7 shows an example SyGuS specification. The original circuit is given
by the function Spec, which defines the output signals O, and O; of the circuit
in Fig. 1. Note that ite is a special operator that we use as a work-around since
SyGuS does not allow the output to be a concatenation of bits. Inside the SyGuS
tool, we made some modification to permit the solver to return a circuit where
different output signals share the same set of intermediate logic gates — this is
crucial for us to generate a compact circuit. The template of the output circuit
is given by the function Impl, which specifies the pool of components that can
be used by the synthesizer, including the output node Start, and nodes on the
remaining three levels: d0, d1 and d2. On each level, both AND and OR gates
may be used. The primary inputs are 10 — i6. The constraint at the bottom
of the file states that the two circuits are functionally equivalent. Given this
specification as input, the SyGuS tool will generate the desired countermeasure.

I (define-fun Spec ((10 Bool) (il Bool) (i2 Bool) (i3 Bool) (i4 Bool) (i5 Bool) (i6
Bool)) Int
(+ (ite (and 12 (and il (and 10 (and 14 (and i3 (and i5 1i6)))))) 1 0 )
(ite (and il (and i0 (and i4 (and i3 (and il i2))))) 2 0 ) )
4)
5 (synth-fun Impl ((i0 Bool) (il Bool) (i2 Bool) (i3 Bool) (i4 Bool) (i5 Bool) (i6
Bool)) Int

6 ((Start Bool ( (+ (ite d0 1 0)

7 (ite d0 2 0)) ) )

8 (d0 Bool ( (and dl dl)

9 (or dl d1) ) )

10 (dl Bool ( (and d2 d2)

1 (or d2 d2) ) )

12 (d2 Bool ( (and d3 d3)

13 (or d3 d3) ) )

14 (d3 Bool ( 10 il i2 i3 1i4 i5 i6 ) ) )
15 )

16 (constraint (= (Spec 10 il i2 i3 i4 1i5 i6) (Impl i0 il i2 i3 i4 i5 i6) ) )

Fig. 7. Automatically generated synthesis subproblem for Og and O; (Fig. 1) in SyGuS
language.

The second challenge is to scale up this new synthesis method to large cir-
cuits. Even with the optimizations mentioned above, state-of-the-art SyGuS
tools can only handle small circuits, since as the circuit size increases, the design
space that SyGuS has to search through increase dramatically. Although we
believe the performance of SyGuS tools will continue to improve in the coming
years, such improvement alone is unlikely to be sufficient for handling realis-
tic circuits. Therefore, we propose a new method based on the idea of divide-
and-conquer. It leverages a nice compositionality property of the FSA-resistant
circuit: If each partition of a circuit is FSA-resistant, then the whole circuit is
guaranteed to be FSA-resistant as well.
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5 The Partitioned Synthesis Approach

To partition the given circuit, we first represent the combinational part as a
directed acyclic graph (DAG), whose input nodes are either primary inputs or
pseudo primary inputs (outputs of latches from the previous clock cycle). Then,
we traverse the DAG in a topological order to identify the vulnerable (sensitive)
output signals. Specifically, if there are discrepancies between the delays along
different paths to the output from different sensitive inputs, we consider it to
be vulnerable. For each vulnerable output signal, we build a circuit region by
iteratively including logic gates in its fanin and fanout cones until the region size
reaches a predefined limit. We invoke the SyGuS tool on each circuit region to
synthesize the replacement circuit. By replacing the old circuit region with the
new circuit, we can eliminate the vulnerability. This process of extracting, syn-
thesizing, and replacing vulnerable circuit regions is repeated until no vulnerable
circuit region exists any more.

5.1 The Overall Algorithm

The pseudocode of our partitioned synthesis procedure is shown in Algorithm 1,
where P denotes the original circuit, InputSort denotes a map from each input
of P to a type (sensitive or non-sensitive), GatesPD denotes a map from each
gate in P to its propagation delay, and GatesSyn denotes a set of logic gates
(components) to be used by SyGuS for synthesizing the new circuit. The para-
meter [ev is a bound on the maximum number of levels of the new circuit region
to be synthesized.

Algorithm 1. Partitioned FSA-countermeasure synthesis procedure.

1: GEN-COUNTERMEASURE (P, InputSort, GatesPD, GatesSyn, lev) {
2: while ( true ) {

3: for each ( gate g € P) {

4: MazPD[g] < GETMAXPD (g, GatesPD, P)

5: MinAr[g] < GETMINAR (g, GatesPD, P)

?: MazAr[g] «— GETMAXAR (g, GatesPD, P)

8: sGate «— GETSENSITIVE (MaxzPD, MinAr, MazAr, P)
9: if (sGate = 0)

10: return P;

11: R |

12: newReg +— ()

13: while (newReg = 0) {

14: reg < GETREG (sGate, MinAr, MazAr, P,n)

15: newReg < SYNTHESIZE (reg, MinAr, GatesSyn, lev)
16: n«—n-—1

17: }

18: P «— UPDATEREGION (P, reg, newReg)

19: 1}

20: }

Our method first identifies a sensitive gate sGate € P (Lines 3-8), based on
which it generates small circuit regions (Line 14). It starts by analyzing each
gate g € P while creating three auxiliary tables:
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— MazPD][g] denotes the maximum path delay from g to the output of P,
— MinAr[g] denotes the minimum arrival time of any sensitive input to g, and
— MaxzAr|[g] denotes the maximum arrival time of any sensitive input to g.

The subroutine GETSENSITIVE returns the next sensitive gate sGate, which is a
gate g € P such that the maximum arrival time MazAr[g] differs from the mini-
mum arrival time MinAr[g]. In the presence of multiple choices, this subroutine
returns a gate with the smallest propagation delay from the sensitive inputs.
In the case of a tie, the gate with the maximum propagation delay MazPD|g]
to the primary output is selected. This heuristic helps our method find a small
countermeasure circuit.

Next, it invokes the subroutine GETREG to extract a circuit region reg,
consisting of logic gates in the fanin and fanout cones of sGate. From reg, we
synthesize a new circuit newReg, which is functionally equivalent to reg and, at
the same time, FSA-resistant. If the synthesis subroutine fails to find newReg
for reg, it will be invoked again for a circuit region reg with a smaller number of
gates. There may not always exist an FSA-resistant newReg, for example, when
the mismatch between the maximum and minimum arrival times of the inputs of
reg exceeds the maximum depth of newReg defined by lev. In such case, newReg
is synthesized with the goal of reducing the mismatch between the arrival times,
and the residual mismatch will be eliminated in a later iteration. After finding
the new region, we replace it with the old region in P. We keep updating P until
no more sensitive gates remain in the circuit. At this point, the new circuit P is
returned.

5.2 Region Selection

Inside the subroutine GETREG, the sensitive gate sGate is added to reg first.
Then, we expand reg by adding the sensitive fanout gates transitively. When no
sensitive fanout gate exists, we add the sensitive fanin gates of sGate transitively.
When there are multiple sensitive fanin gates, we always add the gate with the
minimum arrival time first, until reg reaches a predefined size limit n. This
heuristic ensures that we follow a topological order and therefore avoids the
need to re-synthesize countermeasures for the same gate. It also reduces the
maximum mismatch in the arrival time by decreasing the circuit’s maximum
depth.

Given lev, which is controlled by the user,
each new region would have a maximum size of
2lev 1 gates. The maximum size occurs when
all region inputs have equal arrival time from
the inputs of P. If the region inputs have differ-
ent arrival time, however, they will be assigned
to different levels in the template circuit, which

means the total number of gates would be less
than 2lev — 1. Fig.8. The size of the new
region.
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For example, the region in Fig. 8 has lev = 2, but since the three inputs have
arrival time of a, a and a + 1, respectively, the template circuit would have two
nodes as opposed to the maximum (22 — 1) = 3 nodes.

In Algorithm 1, both GatesSyn and lev are parameters that may be con-
trolled by the user. They are used to identify a sweet spot for the application
with respect to several optimization factors. For example, by including more
types of gates in GatesSyn, the number of solutions to be examined by the
SyGusS tool will increase. It may lead to a more compact solution, but may also
increase the search time. Similarly, having a larger lev will improve the quality of
the synthesized circuit, since gate sharing is more likely in a larger circuit than
in a smaller circuit. On the other hand, having a larger lev will significantly slow
down the synthesis procedure.

6 The Synthesis Subroutine

Given a circuit region reg, the subroutine SYNTHESIZE searches for a functionally
equivalent new circuit newReg that is also FSA-resistant. The pseudocode of
this subroutine is shown in Algorithm 2, where the input consists of reg, the
map MinAr, the set GatesSyn of logic gates (components) to used in creating
newReg, and lev.

Algorithm 2. The synthesis subroutine based on SyGusS.

1: SynNTHESIZE (reg, MinAr, GatesSyn, lev) {

2:  testEx «— 0

3:  Depth « GETINPUTDEPTH (reg, lev, MinAr)

4:  while (true) {

5: newReg < GENNEWREGION (reg, testEx, Depth, GatesSyn, lev)
6: if (newReg exists) {

g: test «— CHECKEQUIVALENCE (reg, newReg)

9:

if (test = 0)
return newReg;

10: testEx «— testEx U {test}
11: }
12: else
13: return (;
14:
15: }

The subroutine starts by initializing the set testFx to an empty set. This is
a set of input values used by SyGusS to generate a partially equivalent candidate
circuit. That is, at least for these test input values, newReg and reg guaranteed
to produce the same output. Later, we will invoke the verification subroutine to
check if newReg and reg produce the same output for all possible input values.

Subroutine GETINPUTDEPTH computes the appropriate depth for each of
the input signals in order to reduce the discrepancies among their arrival time
at the outputs. At Line 4, the subroutine enters a while-loop that contains two
main steps. In the first step, it calls SYNNEWREGION to search for newReg. In
the second step, it calls CHECKEQUIVALENCE to prove the functional equivalence
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of reg and newReg. If they are not equivalent, a counterexample, denoted test,
will be returned. This new input value will be added to test Ex before the while-
loop enters the next iteration. The larger the set testExz, the more likely that
the next newReg is functionally equivalent to reg.

Computing the Input Depth. The subroutine GETINPUTDEPTH computes, for
each input signal in reg, the allowed depth in newReg (the level as described in
Fig.6). Recall that each input signal in reg may have a different arrival time.
Therefore, inside newReg, they need to be placed at different levels (or have
different depths) in order to eliminate the mismatch in the time taken for them
to arrive at the output. Consider, for example, the circuit in Fig. 9, which has
different delay along different input-to-output paths in reg (boxed region). To
eliminate the mismatch in newReg, node X should be placed one level closer to
the output O than nodes A and B. The pseudocode for computing the depths
of all input signals (for creating newReg) is shown in Algorithm 3.

Fig. 9. Example of circuit reg. Fig. 10. Example of the newReg.

Algorithm 3. Computing the depths of the input nodes in newReg.

1: cerINPUTDEPTH (reg, lev, MinAr) {

2:  minMinAr « minimum of MinAr[in] for all input in
3: for each (input signal in € reg) {

4: Appr — MinArlin] — minMinAr

5: newRegDepth[in] «— MAX(2, (lev — Aar))

6: 1}

7: return newRegDepth;

8: 1

Generating the Candidate Circuit. Subroutine SYNNEWREGION computes a
candidate circuit that behaves the same as reg at least for the test cases in
testEx. It follows our description in Sect. 4, where the template circuit is con-
structed using the SyGuS specification language. Then, it invokes the solvers in
the SyGusS tool [2] to compute a solution. For example, a solution returned by
SyGusS for the example in Fig.9 is shown in the boxed region in Fig.10. The
resulting circuit, denoted newReg, is checked by the verification subroutine. If no
candidate circuit exists and the subroutine SYNNEWREGION returns an empty
set, Algorithm 1 will invoke it again on a smaller region.
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More formally, using the SyGuS specification language, we construct a log-
ical formula @ for reg, whose satisfying assignment directly corresponds to a
candidate solution for newReg. The logical formula @ is defined as follows:

b = @reg A @template A éEqI A @EqO A gzjtesthy

where @,.., encodes the input-output relation of the original circuit reg, @iempiate
encodes the input-output relation of the template circuit (as in Fig.6), Pgqr
asserts that reg and the template circuit share the same input values, @gq0
asserts that reg and the template circuit have the same output, and D;csipy
restricts the input values to the examples in testEz.

Verifying the Equivalence. For each candidate circuit newReg, we also need to
verify that it is equivalent to reg for all input values (not just the input values in
testEx). This is a standard equivalence checking problem, for which we construct
a logical formula ¥ such that ¥ is satisfiable if and only if newReg and reg are
not equivalent. The new formula ¥ is defined as follows:

v = wreg A g’newReg A le/qu A q/Unera

where ¥, encodes the input-output relation of reg, ¥yewreq €ncodes the input-
output relation of newReg, Wrqr asserts that reg and newReg share the same
input values, and Yypeqo asserts that reg and newReg have different output
values.

If ¥ is satisfiable, a test case (input value) will be generated to show why
two regions are not equivalent. In such case, we add the new test to testEx
so that the bad solution will not be computed in the future. Then, we invoke
SYNNEWREGION again.

7 Experiments

We have implemented our method using the SyGuS solvers [2] and conducted
experiments on a set of circuits that implement various parts of the Advanced
Encryption Standard (AES) and MAC-Keccak, which is the SHA-3 crypto-
hashing algorithm recently standardized by NIST. Table1 shows the statistics
of these benchmarks, including the name, a brief description, the circuit size,
as well as the number of input and output signals (bits). The source code of
our synthesis tool as well as the input files and instructions to reproduce our
experiments are available for artifact evaluation.

During the experiments, we used the AND, XOR, OR and NOT gates as
components in GatesSyn for synthesizing new regions. We set the depth lev to 3.
To compare with state-of-the-art techniques, we implemented the buffer insertion
method as described in [19,22]. We also applied the logic optimization algorithms
in the ABC tool [12], to check if standard algorithms in EDA tools can be used
to generate FSA-resistant circuits (the answer is no). All our experiments were
conducted on a computer with a 3.4 GHz Intel i7-2600 processor and 4 GB RAM.
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Table 1. Statistics of the set of benchmark circuits used in our experiments.

Name | Circuit description Nodes | Inputs | Outputs
C1 MAC-Keccak nonlinear masked Chi function 1 [8] 35 |10 1
C2 MAC-Keccak nonlinear masked Chi function 2 [8] 35 |10 1
C3 Generated MAC-Keccak nonlinear masked Chi 44 110 1
function 1 [14]
C4 Generated MAC-Keccak nonlinear masked Chi 44 110 1
function 2 [14]
C5 Unmasked MAC-Keccak nonlinear Chi function [§] 6| 3 1
C6 AES S-Box design of nonlinear invg4 function [11] 83 | 4 4
c7 AES S-Box design of nonlinear mul4 function [11] 63 | 8 4
C8 AES S-Box single round nonlinear functions [11] 209 | 8 8
C9 Complete AES PPRM1 S-box design [34] 8,054 | 8 8
C10 | Complete AES Boyar-Peralta S-box design [11] 156 | 8 8

Table 2 shows our experimental results. Columns 1-2 show the benchmark
name and the number of nodes in the original circuit. Columns 3-4 show the
number of nodes in the new circuit obtained by buffer insertion, and the node
increase in percentage. Columns 5-6 show the number of nodes in the new circuit
obtained by our method, and the node increase in percentage.

Table 2. Comparing our synthesis method with buffer insertion [19,22].

Name | Nodes | Buffer insertion | New method
Nodes |Increase | Nodes | Increase

C1 35 51 |45 % 42 120%
C2 35 48 |37% 40 |14 %
C3 44 54 | 22% 48 19%
C4 44 59 [34% 45 1 2%
C5 6 9 150% 9 150%
C6 83 134 [61% 98 | 18%
c7 63 79 | 25% 73 115%
C8 209 292 [39% 244 |16 %
C9 8,054 | 77,717 | 864 % 8,943 |11 %
C10 156 | 9,585 | 6044 % 370 |137%

The results in Table2 demonstrate the effectiveness of our method in syn-
thesizing more compact countermeasures against FSA attacks. Compared to the
buffer insertion method, the circuits produced by our method are consistently
smaller. For example, our new circuit for C9 has only 11 % more nodes than the
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original circuit, whereas the circuit produced by the buffer insertion method has
864 % more nodes.

Table 3 shows the statistics of our iterative synthesis method, where Column 2
is the number of calls that we made to SyGuS to generate the new circuit regions.
Among them, Column 3 shows the number of successful calls and Column 4
shows the number of failed calls. The results shows that calls to SyGuS almost
always succeed — recall that when the SyGusS solver fails, the size of reg has to be
reduced before we try again. Column 5 is the total time taken by our synthesis
method to generate the final result.

Table 3. Statistics of our new synthesis method.

Name | Synthesis iterations | Successful iterations | Failed iterations | Total time [s]
C1 7 7 0 1.22
c2 5 5 0 0.10
C3 4 4 0 0.09
C4 2 2 0 0.06
Ch 4 3 1 0.13
Cé 23 23 0 0.48
C7 12 12 0 0.26
C8 47 47 0 1.11
C9 2,627 2,627 0 412.3
C10 219 217 2 13.7

For most benchmark circuits, the time taken by our method to synthesize
the countermeasure is negligible. Furthermore, the synthesis time only increases
moderately as the countermeasure circuit size increases. Finally, compared to
prior techniques such as the buffer insertion method, our new method is more
effective in reducing the area cost: as the circuit size increases, the saving also
increases.

To confirm that standard EDA algorithms cannot generate FSA-resistant
circuits, we also applied the ABC tool [12] to all the benchmark circuits. Specif-
ically, ABC has a command called balance, which is designed to balance the
delay along input-output paths in a circuit. To preform balancing, ABC starts
by converting the circuit into an And-Inverter-Graph (AIG). This results in a
circuit containing only AND gates and Inverters. Then ABC heuristically opti-
mizes the new circuit by balancing the number of two-input AND gates between
the circuit output and the primary inputs.

Unfortunately, ABC does not distinguish sensitive input signals from insen-
sitive ones. As such, it cannot be used to target only the sensitive input-output
paths. For the sake of comparison, we conducted the experiments using a vari-
ant of our method (a weakened version) that does not differentiate between the
type of the primary inputs either. That is, as in ABC, we pretend that all input
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signals of the circuit are sensitive. Table 4 shows the results of our experiments.
Here, the focus is on comparing the size of the new circuits and the depth of the
circuits (longest path).

Table 4. Comparing our method with the balance command of ABC [12].

Name | Depth | ABC Our new method
Node increase | Depth | Node increase | Depth

C1 8 300 % 27 120% 5
C2 7 1300% 27 131% 6
C3 7T 1213% 25 120% 6
C4 8 |273% 28 | 18% 6
C5 3 1233% 7 150% 3
C6 9 |285% 31 [18% 7
C7 7T 1322% 21 [16% 7
C8 17 1 308% 33 |17% 15
C9 156 | 80% 586 | 11% 17
C10 24 1476 % 64 |137% 23

The results in Table 4 show a noticeable difference in the quality of the syn-
thesized circuits. First, in all cases, our new circuits are significantly smaller than
those obtained by ABC. Indeed, the node increase percentage by ABC ranges
from 80 % to 476 % (the average is 285 %), whereas in our method, it only ranges
from 2% to 137 % (the average is 33 %). In addition, the longest path (Depth),
measured by largest number of gate levels between any primary input and the
circuit output, is also significantly smaller in the our new circuits.

8 Related Work

As we have mentioned earlier, our method is the first inductive synthesis based
method for synthesizing FSA-resistant circuits. Although there is a large body
of work on logic synthesis and optimization, traditional EDA algorithms cannot
be used to solve this problem. Since our method relies on inductive synthesis, as
opposed to matching some known patterns and then applying predefined trans-
formations, it can search through a larger design space and therefore generate
solutions that are better than hand-crafted countermeasures. In addition, our
solutions are provably secure.

Ghalaty et al. [22] proposed a method for implementing FSA countermea-
sures based on the addition of delay elements at the inputs of certain gates in
the circuit, to equalize the path delays from sensitive inputs. As we have demon-
strated through experiments, their method can lead to countermeasures with
significantly more logic gates. Furthermore, it does not guarantee to eliminate
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the mismatch in the arrival time of the input signals for all gate types; in par-
ticular, it ignores the XOR gates. Due to this reason, their countermeasure may
still be vulnerable to FSA attacks.

Endo et al. [19] proposed another countermeasure to defend against FSA
attacks based on adding a configurable buffer circuitry to delay the propagation
of the output signals from the cryptographic module. However, their method is a
post-silicon solution, which means it does not seek to modify the implementation
of the original circuit as in our case. In general, a post-silicon solution is more
expensive to implement, since the delay period needs to be configured after the
chip is manufactured. To configure the delay, they first measure the delay needed
for securing the manufactured cryptography module and then store the delays
in an on-chip memory. As for the experimental evaluation, they implemented
the countermeasure only for the benchmark C9, and reported a gate overhead
of 10% to 16 %, which is similar to our solution. However, their countermeasure
was designed manually, whereas ours is generated automatically.

There is also a large body of work on verifying and synthesizing counter-
measures against other types of side-channel attacks. They include, for exam-
ple, the verification tools developed by Bayrak et al. [7], the SC Sniffer tool
developed by Eldib et al. [15-18], the compiler assisted masking tool developed
by Moss et al. [35], the code morphing method proposed by Agosta et al. [1],
and the tool developed by Eldib et al. [14] for synthesizing masking counter-
measures for cryptographic software. However, none of these existing tools can
handle fault injection based attacks on cryptographic circuits. Although Barthe
et al. [6] developed a method for systematic analysis of the security of crypto-
graphic implementations against fault attacks, their focus was on finding fault
attacks against cryptographic implementations, as opposed to synthesizing the
countermeasures.

9 Conclusions

We have presented a new method for synthesizing cryptographic circuits to
defend against fault sensitivity analysis based attacks. Our method relies on
syntax-guided inductive synthesis to search for a new circuit that is functionally
equivalent to the original circuit and at the same time FSA-resistant. It has the
potential to discover more compact and efficient implementations than existing
techniques. We have implemented the method and evaluated it on a set of cryp-
tographic circuits. Our experiments show that the method is both scalable and
effective in eliminating FSA vulnerabilities. For future work, we plan to evaluate
the countermeasures synthesized by our new method on real hardware to assess
its resistance against FSA attacks.
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